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ABSTRACT 

A multiple-pollutant version of CMAQ v4.6 (i.e., CMAQ-MP) has been applied by the US EPA over continental US in 
2002 to demonstrate the model’s capability in reproducing the long-term trends of ambient criteria and hazardous air 
pollutants (CAPs and HAPs, respectively) in support of regulatory analysis for air quality management. In this study, a 
comprehensive model performance evaluation for the full year of 2002 is performed for the first time for CMAQ-MP 
using the surface networks and satellite measurements. CMAQ-MP shows a comparable and improved performance for 
most CAPs species as compared to an older version of CMAQ that did not treat HAPs and used older versions of na- 
tional emission inventories. CMAQ-MP generally gives better performance for CAPs than for HAPs. Max 8-h ozone 
(O3) mixing ratios are well reproduced in the O3 season. The seasonal-mean performance is fairly good for fine particu- 

late matter (PM2.5), sulfate , and mercury (Hg) wet deposition and worse for other CAPs and HAPs species. 

The reasons for the model biases may be attributed to uncertainties in emissions for some species (e.g., ammonia (NH3), 
elemental carbon (EC), primary organic aerosol (POA), HAPs), gas/aerosol chemistry treatments (e.g., secondary or- 

ganic aerosol formation, meteorology (e.g., overestimate in summer precipitation), measurements (e.g., 

 2
4SO 

3NO ), and the 
use of a coarse grid resolution. CMAQ cannot well reproduce spatial and seasonal variations of column variables except 
for nitrogen dioxide (NO2) and the ratio of column mass of HCHO/NO2. Possible reasons include inaccurate seasonal 
allocation or underestimation of emissions, inaccurate BCONs at higher altitudes, lack of model treatments such as 
mineral dust or plume-in-grid process, and limitations and errors in satellite data retrievals. The process analysis results 
show that in addition to transport, gas chemistry or aerosol/emissions play the most important roles for O3 or PM2.5, 
respectively. For most HAPs, emissions are important sources and cloud processes are a major sink. Simulated 

2 2 3H O HNOP P  and HCHO/NO2 indicate VOC-limited chemistry in major urban areas throughout the year and in other 

non-urban areas in winter, but NOX-limited chemistry in most areas in summer. 
 
Keywords: Multi-Pollutant; Air Toxics; Model Evaluation; Process Analysis 

1. Introduction 

Hazardous air pollutants (HAPs) or air toxics are the pol- 
lutants known to cause serious effects on human health, 
such as cardiovascular, neurological, and other organ 
system problems and adverse environmental issues. 188 
air toxics are identified and regulated under the 1990 
Clean Air Act. HAPs are emitted from a variety of sour- 
ces, including large manufacturing facilities, combustion 
facilities, small commercial, and both onroad and non- 
road mobile sources [1]. In contrast with criteria air pol- 
lutants CAPs such as O3 and PM2.5, HAPs are normally 
controlled by state or local air toxics monitoring pro-  

grams rather than the National Ambient Air Quality 
Standards (NAAQS) [2]. In recent years, the US Envi- 
ronmental Protection Agency (EPA) has launched sev- 
eral programs (e.g., National Air Toxics Assessment), in 
order to gain a better understanding of the impacts of air 
toxics emissions on public health and environment and 
eventually strengthen the nation’s air quality manage- 
ment system [3]. One of the major activities as part of 
those programs is the development and evaluation of the 
2002 multiscale multiple pollutants (MP) air quality 
modeling platform to integrate across the complex che- 
mical and physical processes for MPs in a single model- 
ing framework in support of scientific research and regu- 
latory analysis. *Corresponding author. 
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The US EPA’s Models-3 Community Multiscale Air 
Quality (CMAQ) modeling system was developed in 
order to support both air quality regulatory assessments 
by governmental agencies and scientific studies by re- 
search institutions [4]. CMAQ has been extensively ap- 
plied over a wide range of meteorological conditions and 
geographical areas in order to address air quality issues 
related to CAPs such as ozone (O3) and fine particulate 
matter (PM2.5) during the past decades [5-15]. However, 
CMAQ only simulates CAPs, which hinders its applica- 
tion for HAPs. There is a growing awareness that CAPs 
and HAPs controls should be considered together be- 
cause air quality issues in many areas of the US and 
abroad involve both types of pollutants [2]. The assess- 
ment of the model’s capability in representing HAPs to- 
gether with CAPs is critical to the development of cost- 
effective emission control strategies for both CAPs and 
HAPs. Accurate modeling of this complex MP system 
requires that a broad range of temporal and spatial scales 
of MP interactions be considered simultaneously. To 
address this issue and further advance the “one-atmos-
phere” modeling capability of CMAQ, an MP version of 
CMAQ (referred to as CMAQ-MP hereafter) has been 
developed by the US EPA to simulate O3, PM2.5, mercury 
(Hg), and other HAPs (or air toxics) in a single model 
framework. 

Multiple full year simulations with CMAQ-MP here- 
after have been conducted by the US EPA over domains 
that cover the entire US or a portion of continental US 
(CONUS) for 2002 at different horizontal grid resolu- 
tions [3]. In this work, a comprehensive model evalua- 
tion is performed by comparing simulated concentrations 
of O3, PM2.5 and its components, precursors of O3 and 
PM2.5, major air toxics, as well as Hg deposition with 
ground-based and satellite measurements. Likely reasons 
that influence prediction biases of major pollutants are 
identified. The seasonal photochemical characteristics 
are examined and the relative contributions of controlling 
processes to the formation and destruction of major 
CAPs and HAPs are quantified through process analysis 
(PA) tool imbedded in CMAQ to provide important in- 
formation to the development of the effective emission 
control strategies. The objectives of this study are to 
examine the capability and performance of CMAQ-MP 
in reproducing temporal and spatial patterns of air pol- 
lutants, quantify the contributions of major atmospheric 
processes to these pollutants, guide further diagnostic 
evaluations for model improvement and further devel- 
opment, and build confidence in the utilization of CMAQ- 
MP to air quality regulatory and research communities. 
To our best knowledge, this is the first comprehensive 
performance evaluation and process analysis of CMAQ- 
MP that simulates both CAPs and HAPs. Previous mod-
eling of HAPs focus on either one species (e.g., Hg [16-  

18] or diesel PM [19]) using a version of CMAQ with Hg 
(i.e., CMAQ-Hg) based on the CB05CLHG gas-phase 
mechanism or a subset of HAPs species (e.g., some HAPs 
[20] or several trace metal HAPs [21]) using a version of 
CMAQ for HAPs modeling based on a different gas- 
phase mechanism (i.e., SAPRC99TX3) from that used in 
CMAQ-HAPs (i.e., CB05CLTX) and that used in CMAQ- 
MP (CB05TXHG). CB05TXHG combines HAPs treat-
ments in CB05CLTX with Hg treatments in CB05CLHG, 
providing a comprehensive treatment for all major HAPs.  

2. Model Configurations, Observational 
Data, and Evaluation Protocols 

2.1. Model System and Configurations 

CMAQ-MP has been developed by the US EPA through 
modifying algorithms for gas-phase chemistry, aerosols, 
clouds, and emissions used in the previous Hg and HAPs 
versions of the CMAQ (i.e., CMAQ-Hg and CMAQ- 
HAPs [22,23]) and merging them into the default CMAQ 
v4.6. CMAQ-MP, which has almost the same air toxics 
treatments as in the newer version of CMAQ v4.7 and 
CMAQ v5.0 in this study, includes elemental Hg (Hg0), 
divalent gaseous Hg (Hg(II) or Hg2), particulate Hg 
(PHg), 31 additional gas-phase HAPs, 6 toxic metals, and 
diesel PM as well as CAPs in the base version of CMAQ 
(details about air toxic species can be found at  
http://www.cmaq-model.org/cmaqwiki/index.php?title=C
MAQv4.7.1_Multipollutant_Model). The chemical reac- 
tions for chlorine, Hg, and HAPs were added with the 
Carbon Bond Mechanism 2005 (CB05 [24]) and imple- 
mented together into CMAQ. The gas-phase mechanism 
of CMAQ-MP consists of 219 reactions, which include 
156 reactions from base CB05 mechanism, 21 reactions 
for chlorine chemistry, 38 reactions for gas-phase HAPs, 
and 4 reactions for Hg [23]. Those reactions for HAPs 
and Hg mainly involve the oxidations by radicals such as 
hydroxyl (OH) and nitrate (NO3) radicals. A modified 
version of aerosol module version 4 (AERO4) also con- 
tains the treatment of sea salt emissions. The vertical 
diffusion module associated with aerosol emissions is up- 
dated for CMAQ-MP aerosol simulations [13]. CMAQ- 
MP uses the dry deposition module adopted from CMAQ- 
Hg. The aqueous-phase chemistry of Hg is largely based 
on CMAQ-Hg, which includes 7 aqueousphase kinetic 
and 6 equilibrium reactions. The aqueous-phase chemis- 
try for other species such as SO2 is based on the Regional 
Acid Deposition Model (RADM). 

In this study, CMAQ-MP is applied to three annual 
(2002) simulations conducted by the US EPA (US EPA, 
2008) over a parent domain (CONUS) at a horizontal 
grid resolution of 36-km and two sub-domains (portions 
of the eastern US (EUS) and the western US (WUS)) at a 
finer grid resolution of 12-km, as shown in Figure 
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1. The vertical resolution for each domain includes 14 
layers from the surface to approximately 100 hPa (at ~15 
km) using a sigma-pressure coordinate system. The 
height of first model layer is ~38 m. The meteorological 
inputs for each domain are simulated separately by the 
US EPA using the 5th generation PSU/ NCAR mesoscale 
model (MM5) v3.6.3 for the 36-km CONUS domain and 
MM5 v3.7.2 for the 12-km EUS domain, and by the 
Western Regional Air Partnership (WRAP) using MM5 
v3.6.2 for the 12-km WUS domain [25]. All the three 
MM5 simulations are conducted with the four dimen- 
sional data assimilation (FDDA) and use the Pleim-Xiu 
land surface model, Asymmetric Convective Model 
(ACM) planetary boundary layer (PBL) parameterization 
schemes, and the RRTM longwave and Dudhia short- 
wave radiation schemes. While the EPA simulations use 
the Reisner I scheme for microphysics and the Kain- 
Fritsch II scheme for the subgrid or cumulus convection, 
the WRAP simulation uses the Reisner II scheme and the 
Betts-Miller scheme. The MM5 hourly meteorological 
outputs are converted to CMAQ compatible inputs with 
the Meteorology-Chemistry Interface Processor (MCIP) 
version 3.1. The emissions are generated with the Sparse 
Matrix Operator Kernel Emission system (SMOKE) ver- 
sion 2.3 based on the EPA’s 2002 National Emissions 

Inventory (NEI) v3.0 for all domains. The boundary con- 
ditions (BCONs) and initial conditions (ICONs) of the 
36-km domain are provided by a global chemistry trans- 
port model, GEOS-Chem [3], for key CAPs and Hg spe- 
cies and those of the 12-km domains are taken from the 
36-km simulation. For HAPs species, BCONs of the 
36-km domain for formaldehyde (HCHO) and acetalde- 
hyde (ALD2) are also from GEOS-Chem, but those for 
other species are static and based on scientific literatures 
and available field studies [1,26]. A ten-day spin-up pe- 
riod from 12/22 to 12/31 2001 is used to minimize the 
influence of the ICONs for each simulation. 

2.2. Evaluation Protocols and Observational 
Data 

Currently the model performance evaluation for most 
CAPs and related variables wet depositions has been 
guided by US EPA [27]. However, there are no recom- 
mended performance goals or objectives for evaluating 
HAPs. The recommended statistics for O3 or PM2.5 may 
not be appropriate for air toxics. Seigneur et al. [28] in- 
dicated that the model performance for HAPs may be 
relatively poor due to higher uncertainties in toxics emis- 
sions than in the emissions of CAPs. In this work, an 

 

 

Figure 1. The CMAQ modeling domain. The black, red, and blue boxes denote domains over the 36-km continental US, the 
12-km western US, and the 12-km eastern US, respectively (filled yellow, orange, blue, green, and red colors denote 
ub-regions northeast, southeast, Midwest, central and west for statistics). s 
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operational model performance evaluation for O3, PM2.5 
and its speciated components such as 4SO2 , 3NO , 

4 , EC, and OC, Hg wet deposition, and a selected set 
of HAPs is conducted using available routine surface 
monitoring data and satellite column data (Table 1). The 
surface data include those from the Clean Air Status and 
Trends Network (CASTNET), the Interagency Monitor- 
ing of Protected Visual Environments (IMPROVE), the 
Speciation Trends Network (STN), the Aerometric In- 
formation Retrieval System (AIRS)-Air Quality System 
(AQS), the Southeastern Aerosol Research and Charac- 
terization study (SEARCH), the National Acid Deposi- 
tion Program (NADP), the Mercury Deposition Network 
(MDN), and the National Air Toxics Trends Stations 
(NATTS). Most of these networks are described in Eder 
and Yu [10] and Zhang et al. [6]. 

NH

The satellite column data include the tropospheric CO 
columns from the Measurements of Pollution in the Tro- 
posphere (MOPITT) [29], the tropospheric NO2, HCHO 
columns, and their ratios (HCHO/NO2) from the Global 
Ozone Monitoring Experiment (GOME) [30], the tropo- 
spheric O3 residuals (TORs) from the Total Ozone Map- 
ping Spectrometer/the Solar Backscattered Ultraviolet 
(TOMS/SBUV) [31], the AOD from the Moderate Reso- 
lution Imaging Spectroradiometer (MODIS) [32]. 

In addition to spatial plots, scatter plots, and time se- 
ries plots, the model performance is examined using sta- 
tistical metrics that follow Zhang et al. [6] including the  

mean bias (MB), correlation coefficient (R), the normal- 
ized mean bias (NMB), the normalized mean error (NME), 
and root mean square error (RMSE). The evaluation for 
surface predictions is conducted primarily using the 
EPA’s Atmospheric Model Evaluation Tool (AMET). 
AMET is a software package developed by EPA that can 
perform the operational evaluation of complex models. 
The column abundances of CO, NO2, HCHO, O3, and the 
ratios of column HCHO/NO2 are calculated using pre- 
dicted concentrations from CMAQ and meteorologycal/ 
domain data (i.e., temperature, pressure, and layer thick-
ness) from MM5 and converted into Dobson Unit (DU) 
for O3 and molecules·cm–2 for other species for com- 
parison with satellite data. AODs are estimated based on 
CMAQ PM2.5 predictions using an empirical equation as 
described in Wang et al. [15] and Zhang et al. [8]. In 
addition, the column mass ratios of HCHO/NO2 simu- 
lated by CMAQ-MP are calculated and compared with 
observed ratios. 

3. Evaluation of Model Performance 

3.1. Meteorological Variables 

Before initiating air quality simulations, it is important to 
identify the biases and errors associated with meteoro- 
logical predictions. The MM5 model performance for 
2002 MP modeling platform was evaluated separately 
from this study by Kemball-Cook et al. [25] and Dolwick 

 
Table 1. Summary of observational databases used in the model evaluation. 

Databasea Variables/Species Data Frequency Number of Sites 

Surface 

GAS AIRS-AQS O3 Hourly ~1000 

PM CASTNET 2

4SO  ,  4NH

2

4SO 
3NO

2

4SO 
3NO

4NH

Weekly average ~80 

PM IMPROVE PM2.5, , , EC, OC 1 in 3 days; 24-h average ~100 

PM STN PM2.5, , ,   EC, OC 1 in 3 days; 24-h average ~60 

PM NADP Wet deposition of , 2

4SO 
3NO 4NH ,   Weekly total ~220 

Hg MDN Wet deposition of Hg Weekly total ~100 

Toxics NATTS Various air toxics and metals 24-h average <100 

Satellite 

GOME Column NO2/HCHO Monthly average N/A 

MODIS AOD Monthly average N/A 

MOPITT Column CO Monthly average N/A 

TOMS/SBUV TOR Monthly average N/A 

aAIRS-AQS: Aerometric Information Retrieval System-Air Quality Subsystem; CASTNET: Clean Air Status and Trends Network; GOME: Global Ozone 
Monitoring Experiment; IMPROVE: Interagency Monitoring of Protected Visual Environments; MDN: Mercury Deposition Network; MODIS: Moderate 
Resolution Imaging Spectroradiometer; MOPITT: Measurements of Pollution in the Troposphere; NADP: National Acid Deposition Program; NATTS: Na- 
tional Air Toxics Trends Stations; STN: Speciated Trends Network; TOMS/SBUV: Total Ozone Mapping Spectrometer and the Solar Backscattered Ultravio- 

t. le 
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et al. [33]. These evaluations show that the MM5 mete- 
orological predictions over the three domains represent a 
good approximation of temperature and water vapor 
mixing ration with mean biases generally less than 1.5˚C 
and 0.1 g/kg. The model captures large-scale synoptic 
patterns such as high-pressure domes and upper-level 
troughs. However, cold bias of 2˚C - 3˚C on average ex- 
ists in surface temperature predictions during winter, 
especially in January, from all three MM5 simulations, 
which may be due to the limitations of the PBL and 
land-surface schemes currently used in accurately simu- 
lating the air-land heat fluxes with the coarse grid resolu- 
tion [25]. The effect of cold biases is the largest at night, 
which could overestimate the stability in the lowest lay- 
ers and have a significant impact on chemical predictions 
[33]. MM5 is able to replicate the precipitation fairly 
accurately in spring, fall, and winter, but overestimates it 
in summer, likely due to the excessive convective cloud 
predicted by the model [25]. The model biases/errors for 
various variables over the Rocky Mountain and Great 
Lakes region are relatively larger than other regions due 
to complexity of terrains. Overall, the biases and errors 
associated with these meteorological simulations are  

generally within the range of past meteorological model- 
ing results that have been used for air quality applications 
[3]. A rigorous performance testing demonstrates that the 
dynamic and thermodynamic fields generated by MM5 
are quite sufficient for the 2002 MP modeling platform 
[33]. 

3.2. Criteria Air Pollutants at the Surface 

Because of known differences between networks in terms 
of sampling protocols and measurement procedures, the 
evaluation for surface chemical predictions is conducted 
separately for individual network. For each network and 
pollutant, statistics are calculated for all sites in each 
domain and also with separate breakouts of five sub- 
regions (i.e., Midwest, northeast, southeast, central, and 
west of US) over the CONUS domain (as shown in Fig- 
ure 1) or observed-predicted data pairs in monthly, sea-
sonal, and annual averages. Since the CMAQ evalua- 
tion results for the 12-km and 36-km grids are fairly con- 
sistent especially for CAPs (see Table 2), our analyses 
focus primarily on CMAQ results at 36-km over CONUS 
in this section unless otherwise noted. 

 
Table 2. Seasonal-mean model performance statistics for criteria air pollutants over CONUS and its 5 other sub-regions from 
the 36-km simulation and EUS and WUS from the 12-km simulation in 20021.  

Winter Spring Summer  Fall 
Variables Network Sub-Regions 

NMB* (%) NME* (%) NMB (%) NME (%) NMB (%) NME (%) NMB %) NME (%)

CONUS     1.5 14.0   

Midwest     2.7 13.2   

Northeast     1.7 14.2   

Southeast     2.6 13.0   

Central     3.5 13.0   

West     –1.2 15.5   

EUS (12-km)     –1.9 12.9   

Max 8-h O3 AIRS-AQS 

WUS (12-km)     –4.3 15.0   

CONUS 29.0 59.5 12.3 48.3 –22.8 34.4 2.4 41.5 

Midwest 38.6 49.7 38.4 57.6 –9.1 25.4 15.0 30.3 

Northeast 71.8 74.7 35.6 49.8 –17.7 33.2 26.6 43.4 

Southeast 21.0 46.8 –2.0 36.0 –29.6 33.7 –8.3 32.7 

Central 48.8 65.4 –3.5 50.1 –24.1 37.8 18.3 46.7 

West –19.6 57.3 4.1 54.8 –33.4 42.6 –28.2 50.9 

EUS (12-km) 47.1 60.2 15.3 46.2 –17.4 33.2 15.5 39.0 

STN 

WUS (12-km) 2.2 53.5 3.7 50.6 –23.0 38.0 –4.2 46.4 

CONUS 74.3 94.0 5.6 53.7 –33.8 48.0 11.4 50.9 

Midwest 65.7 70.8 47.2 64.7 –24.2 32.5 29.5 46.7 

Northeast 143.9 146.9 47.4 61.0 –28.0 38.7 42.3 57.6 

Southeast 47.6 66.5 –1.8 43.3 –33.5 39.9 9.2 42.1 

Central 53.4 73.6 –19.1 52.3 –46.1 47.9 16.0 54.1 

West 57.0 89.3 –5.7 54.5 –33.7 57.3 –1.5 51.5 

EUS (12-km) 55.0 72.2 –1.7 46.9 –38.1 42.9 9.6 42.6 

PM2.5 Total Mass 

IMPROVE 

WUS (12-km) 13.7 59.6 –31.7 50.4 –46.5 55.1 –15.9 50.7 
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Continued 

CONUS 21.2 56.3 22.5 53.6 –2.3 39.5 2.8 47.7 

Midwest 25.6 42.5 52.9 71.7 19.6 38.7 14.0 35.8 

Northeast 44.5 51.8 30.0 49.1 3.4 37.9 22.6 44.0 

Southeast 33.8 59.3 16.9 44.2 –0.1 34.7 –1.4 39.9 

Central 43.4 62.5 11.0 47.0 –5.0 37.3 23.9 53.1 

West –33.8 64.6 –0.8 65.9 –42.2 56.2 –42.0 65.5 

EUS (12-km) 27.2 47.3 16.9 44.2 1.0 35.0 9.1 39.0 

STN 

WUS (12-km) –26.8 59.1 –6.1 54.0 –29.1 48.4 –25.8 59.0 

CONUS 39.9 47.2 39.9 51.6 –8.7 25.0 16.7 39.0 

Midwest 16.8 23.5 63.6 65.7 6.6 20.6 26.8 32.9 

Northeast 84.6 84.8 54.0 56.8 –8.6 24.1 26.7 45.9 

Southeast 32.8 42.3 15.9 36.4 –16.6 25.6 3.9 35.2 

Central 41.4 53.8 7.0 39.9 –8.4 22.7 18.4 38.2 

West 45.5 76.4 28.8 50.9 –27.3 43.9 –0.4 53.1 

EUS (12-km) 16.8 31.2 24.2 40.5 –11.8 25.3 4.1 29.7 

Ammonium ( ) 4NH

2

4SO 

CASTNET 

WUS (12-km) –11.2 44.1 –6.2 38.1 –26.0 40.6 –18.2 48.1 

CONUS –5.1 38.1 –11.2 35.7 –4.5 32.7 –6.8 36.2 

Midwest 3.4 40.9 2.1 37.7 10.0 30.2 –6.2 31.3 

Northeast 0.7 32.4 0.5 36.1 1.4 29.7 –4.5 28.4 

Southeast –14.5 34.3 –16.0 31.1 –3.0 31.1 –6.8 34.7 

Central 1.5 41.6 –24.7 38.5 –12.9 35.3 4.0 43.8 

West –24.4 52.2 –16.7 41.6 –42.1 49.6 –38.8 49.2 

EUS (12-km) –6.9 35.1 –13.4 35.5 1.6 31.5 –2.8 34.5 

STN 

WUS (12-km) –8.6 49.2 –14.5 37.4 –27.8 40.6 –22.5 42.8 

CONUS 18.1 50.0 –3.1 35.0 –13.6 35.5 –2.9 36.3 

Midwest 1.9 43.3 –4.4 29.1 –2.5 29.9 0.9 28.3 

Northeast 6.3 35.4 1.5 31.1 –9.5 30.8 –4.2 27.4 

Southeast 2.2 36.9 –8.6 31.1 –6.7 35.9 3.9 39.2 

Central 4.8 41.7 –24.8 35.7 –26.2 35.3 –8.0 36.9 

West 64.3 89.8 8.8 43.2 –19.8 42.2 –6.5 42.1 

EUS (12-km) –8.1 36.2 –16.0 32.9 –11.1 32.1 –7.5 32.6 

IMPROVE 

WUS (12-km) 33.5 61.1 –4.3 38.8 –21.0 41.2 –11.4 38.6 

CONUS –0.9 29.2 –10.3 22.0 –9.7 19.7 –4.3 20.2 

Midwest –8.3 29.8 –7.7 18.9 –4.8 16.0 –5.9 16.3 

Northeast 0.0 24.4 –2.6 17.3 –9.3 16.7 –1.8 15.7 

Southeast –2.0 27.3 –14.5 22.3 –6.8 19.8 –1.5 22.2 

Central –7.2 24.4 –35.2 35.8 –24.1 27.3 –18.9 24.0 

West 46.2 65.2 –7.8 32.0 –35.2 40.7 –12.7 35.8 

EUS (12-km) –17.8 25.3 –17.7 23.5 –6.9 17.7 –9.6 20.0 

Sulfate ( ) 

CASTNET 

WUS (12-km) 11.4 37.3 –18.2 29.8 –32.5 37.9 –21.8 33.4 
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Continued 

CONUS 3.6 63.3 38.4 88.5 –27.0 78.1 –4.5 71.2 

Midwest 16.6 46.2 79.4 104.9 20.1 89.9 23.2 48.2 

Northeast 50.4 67.1 61.5 92.3 5.1 84.5 50.8 91.0 

Southeast 37.0 90.9 44.5 116.0 –57.5 76.2 –4.3 78.5 

Central 12.0 42.5 46.8 70.0 –8.1 73.8 39.4 65.2 

West –49.5 68.1 –22.0 68.5 –64.7 69.3 –54.3 72.7 

EUS (12-km) 24.7 56.3 43.2 82.7 –31.8 74.4 14.0 60.0 

STN 

WUS (12-km) –45.2 59.7 –30.6 59.9 –61.1 69.1 –44.7 65.9 

CONUS 54.7 110.2 85.4 139.9 –36.8 96.3 50.7 112.9 

Midwest 28.6 59.0 168.0 194.5 –6.4 96.1 56.6 75.6 

Northeast 181.9 192.5 196.6 221.0 26.2 128.2 160.0 191.7 

Southeast 65.0 117.5 92.8 161.1 –37.3 96.4 76.1 146.1 

Central 29.5 74.1 58.8 116.1 –65.2 82.9 61.7 96.5 

West 3.5 95.2 38.6 103.9 –47.3 92.2 11.4 98.4 

EUS (12-km) 50.1 95.7 89.1 140.9 –43.8 95.3 53.2 100.5 

Nitrate ( ) 3NO

IMPROVE 

WUS (12-km) –38.7 74.0 –22.6 79.1 –73.3 88.6 –16.1 84.4 

CONUS 20.6 68.0 –3.8 58.7 –14.3 64.6 –7.2 57.6 

Midwest 21.3 40.9 –11.9 32.4 –40.0 43.0 –7.1 33.8 

Northeast 69.1 82.1 23.7 48.8 –30.3 49.9 9.7 46.5 

Southeast –3.0 42.8 –21.0 41.3 –43.2 48.1 –24.4 39.0 

Central 3.8 51.0 –33.4 39.4 –43.5 49.5 –2.0 47.6 

West 9.1 78.9 28.6 79.3 4.9 77.9 –8.5 71.1 

EUS (12-km) 10.4 53.5 –13.4 44.5 –40.1 52.2 –13.5 45.2 

Elemental Carbon 
(EC) 

IMPROVE 

WUS (12-km) –7.4 70.5 –2.6 62.4 –22.8 65.5 –15.2 69.7 

CONUS 45.3 84.1 –2.2 60.4 –41.7 64.7 –11.9 54.2 

Midwest 25.0 53.6 –20.8 41.8 –68.5 68.9 –36.3 41.9 

Northeast 115.1 128.1 31.1 53.2 –61.2 65.8 17.9 46.3 

Southeast 3.2 47.6 –32.9 55.3 –67.9 68.5 –34.9 46.4 

Central 11.7 57.1 –46.0 55.7 –71.0 71.4 –31.5 50.2 

West 42.4 90.3 13.7 67.8 –25.7 62.5 –8.1 59.1 

EUS (12-km) 24.6 65.4 –27.2 53.1 –66.8 69.0 –25.5 47.2 

Organic Carbon 
(OC) 

IMPROVE 

WUS (12-km) –2.9 59.9 –23.7 54.5 –50.4 63.7 –29.5 56.6 

CONUS –16.4 54.1 –16.5 51.5 –57.8 61.2 –37.5 50.7 

Midwest –6.0 55.3 –13.7 51.7 –61.2 62.3 –35.7 43.6 

Northeast 23.5 51.3 4.7 44.5 –60.1 63.7 –14.7 39.2 

Southeast –28.4 44.2 –23.1 47.8 –63.5 64.2 –44.3 52.1 

Central –12.3 46.6 –29.0 49.0 –54.9 59.5 –35.7 47.4 

STN 

West –38.0 66.5 –15.8 63.1 –48.2 54.6 –46.9 60.6 

CONUS 40.2 78.5 –0.1 58.2 –38.3 63.2 –11.0 51.9 

Midwest 24.1 49.2 –18.8 38.2 –63.8 64.0 –29.6 36.2 

Northeast 104.5 115.8 29.8 50.5 –56.9 61.5 16.2 43.0 

Southeast 2.0 45.0 –30.8 52.2 –64.6 65.3 –33.0 43.4 

Central 10.3 55.1 –43.9 51.9 –67.3 67.8 –26.5 48.1 

Total Carbon (TC) 

IMPROVE 

West 35.8 85.0 16.3 67.1 –22.2 62.5 –8.1 57.7 

1Winter: Jan., Feb., and Dec.; Spring: Mar., Apr., and May; Summer: Jun., Jul., and Aug, for other species and May to Sep. for O3; Fall: Sep., Oct., and Nov.; 
*NMB: Normalized mean bias; NME: Normalized mean error. 
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3.2.1. Ozone the O3 season binned for the range of observed O3 values. 

CMAQ tends to reproduce O3 mixing ratios the best in 
the range of 40 - 60 ppb with MBs within 5 ppb but sig- 
nificantly underpredicts high mixing ratios (>80 ppb) and 
overpredicts low mixing ratios of O3 (<40 ppb). Those 
observed low O3 mixing ratios typically coincide with 
non-conducive meteorological conditions (e.g., high cloud 
cover and precipitation and cool temperature). The over-
estimation of low observed mixing ratios of O3 is due in 
part to the poor performance of CMAQ in simulating the 
nighttime O3 as discussed above. As shown in Tables 2 
and 3, CMAQ shows overall excellent performance with 
very small domain-wide NMBs of 1.5%, 1.7%, 2.6%, 
2.7%, 3.5%, and –1.2% for CONUS and its subregions 
including northeast, southeast, Midwest, central, and 
west US, respectively, during O3 season. The NMBs are 
–1.9% over EUS and –4.3% over WUS from the 12-km 
simulations. Although the discrepancies still exist for 
modeled and observed O3 mixing ratios, the results in 
this study demonstrate a moderate to significant im-
provement as compared with previous studies [8,10,12, 
36] because of several factors. First, a relatively new ver- 
sion of CMAQ v4.6 with the newest CB05 chemical me- 
chanism plus additional chloride reactions is used. Re- 
cent studies by Luecken et al. [37] and Yu et al. [38] 
showed that CB05 performs better in reproducing high 
O3 mixing ratios, especially in summer when compared 
with CB-IV and Statewide Air Pollution Research Center 
mechanism (SAPRC99) due to several updates in che- 
mical species, reactions, and reaction rates. Second, a 
new option of PBL scheme, ACM2, is available in 
CMAQ v4.6 and used in this study. ACM2 includes both 
eddy diffusion and nonlocal schemes from the original 
ACM, which enables ACM2 to better represent the rise 
and fall of the convective boundary layer. Appel et al. 
[12] also compared O3 performance of CMAQ v4.5 with 
CMAQ v4.6 both with CB05 and found a better overall 
performance for max 8-h O3 by CMAQ v4.6, potentially 
due to the use of ACM2. Finally, the emission inventory 
used in this work is based on NEI 2002 v3, which repre- 
sents the most comprehensive emission inventory upon 
its release and is more accurate than those used in previ- 
ous studies. 

Figure 2(a) shows scatter plot of modeled and observed 
daily max 8-h O3 with a cut off value of 40 ppb (i.e., data 
pairs containing observed mixing ratios less or equal to 
40 ppb are not used in the analysis) for the O3 season (i.e., 
May to September). As shown, CMAQ simulates max 
8-h O3 mixing ratios quite well with R, NMB, and NME 
of 0.7%, 1.5%, and 14%, respectively and a vast majority 
of values within a factor of 1.5 of observations. Figure 
2(b) shows the box plot of 25% and 75% quartiles 
(shading regions) along with the median values for diur- 
nal O3 values during the entire O3 season at the AQS 
sites (i.e., urban and suburban areas) across the entire 
domain. As shown, the median simulated O3 values are 
fairly close to observations between 10:00 and 19:00, de- 
spite a systematic overprediction of nighttime and early 
morning O3. These findings are consistent with previous 
studies [10,12]. Although the capability of CMAQ in 
simulating nighttime O3 has been improved with an up-
dated parameterization of the minimum KZ since CMAQ 
v4.5 (see release note at 
http://www.cmascenter.org/help/model_docs/cmaq/4.5/R
ELEASE_NOTES.txt), accurately simulating the evolu- 
tion of nocturnal boundary layer remains difficult due to 
limitations of PBL and land-surface schemes in current 
models, and the use of a coarse horizontal resolution and 
vertical resolution in lower portion of PBL (e.g., ~38 m 
in depth for surface layer in this work). 

Figures 2(c)-(e) show the spatial distribution of NMBs 
for max 8-h O3 with a cutoff value of 40 ppb over the 
CONUS at 36-km and WUS and EUS domains at 12-km 
for the O3 season in 2002. For CONUS at 36-km, CMAQ 
shows a good performance to capture the spatial varia-
tion of max 8-h O3 mixing ratios with NMBs of within 
±10% and NMEs of less than 15% over majority (>80%) 
of AQS sites based on the suggested performance criteria 
by other studies [6,34]. CMAQ tends to moderately over- 
predict O3 mixing ratios along some coastal regions with 
NMBs of 20% - 30% (e.g., New England coast and Flor-
ida coast) and sometimes >30% (e.g., along Pacific coast 
in California). This can be attributed to a poor represen-
tation of coastal boundary layers [35,36]. There are also 
several small clusters of overpredictions (with NMBs 
20%) in the Midwest and southeastern US and a cluster 
of underpredictions (with NMBs of –25% to –15%) in 
some areas in southern California and Arizona. These 
large NMBs are likely due to the fact that the use of a 
coarse grid resolution of 36-km cannot accurately repre- 
sent precursor emissions and elevated and/or complex 
terrains over those regions. As shown in Figures 2(d)-(e), 
the simulations at 12-km over WUS and EUS give lower 
NMBs over those regions (e.g., NMBs of –10% - 0% in 
most of the two domains).  

3.2.2. PM2.5 and Its Compositions 

3.2.2.1. Sulfate 
Figures 3(a)-(b) show the spatial plots of NMBs for 

4
  over the IMPROVE, STN, and CASTNET sites 

for winter (Jan., Feb., and Dec.) and summer (Jun., Jul., 
and Aug.) 2002 from the 36-km simulations over 
CONUS. In both winter and summer, CMAQ performs 
better over the eastern US than the western US with most 
of NMBs within ±20%. This is especially true in Figure 2(f) shows the MBs for daily max 8-h O3 for  
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Figure 2. Comparison of the simulated and observed O3 concentrations at the AIRS-AQS monitoring sites during O3 season 
(i.e., May to September) in 2002. (a) Scatter plot of daily max 8-h O3 with a cut off value of 40 ppb (the 1:1, 1.5:1 and 1:1.5 
lines are shown for reference); (b) Box plot of diurnal variation of median (the cross sign denotes AQS and the triangle sign 
denotes CMAQ) and inter-quartile ranges (light and dark shading denote AQS and CMAQ, respectively) for hourly average 
O3; Spatial distributions of NMBs for daily max 8-h O3 from (c) The 36-km simulation over CONUS, and the 12-km simula- 
tions over (d) WUS; and (e) EUS; (f) Median and inter-quartile range of MB binned by observed concentrations of daily max 
8-h O3. The numbers above the X axis indicate the number of simulated/observed data pairs for each concentration bin. 
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Table 3. Seasonal-mean model performance statistics for max 8-h O3, PM2.5, and selected hazardous air pollutants over 
CONUS in 20021. 

Winter Spring Summer Fall 
Variables Network 

NMB* (%) NME* (%) NMB (%) NME (%) NMB (%) NME (%) NMB (%) NME (%)

Max 8-h O3 AIRS-AQS     1.5 14.0   

PM2.5 STN 29.0 59.5 12.3 48.3 –22.8 34.4 2.4 41.5 

Total Mass IMPROVE 74.3 94.0 5.6 53.7 –33.8 48.0 11.4 50.9 

Mercury (Hg) MDN 28.9 84.0 12.4 66.9 –28.2 68.3 –11.7 70.5 

Formaldehyde (HCHO) NATTS –34.4 65.7 –53.1 66.2 –42.6 52.7 –40.0 57.0 

Acetaldehyde (ALD2) NATTS –24.1 50.0 –15.9 54.7 21.9 75.1 –11.8 66.1 

Benzene NATTS –47.8 69.6 –46.8 65.5 –42.4 60.6 –54.7 65.8 

1,3-Butadiene NATTS –71.3 87.4 –78.4 89.6 –83.6 89.2 –80.0 86.8 

Acrolein NATTS –89.4 89.4 –92.7 92.7 –95.1 95.2 –94.6 94.6 

Particulate Lead NATTS –40.1 65.4 –57.6 70.1 –59.6 72.6 –56.2 68.4 

1Winter: Jan., Feb., and Dec.; Spring: Mar., Apr., and May; Summer: Jun., Jul., and Aug, for other species and May to Sep. for O3; Fall: Sep., Oct., and Nov.; 
*NMB: Normalized mean bias; NME: Normalized mean error. 

 
summer when 4  contributes the most to total PM2.5 
mass concentrations in the eastern US, likely as the re- 
sults of a better representation of emissions of SO2 and 

 in the eastern US. Compared to the 2001 NEI that 
significantly underestimates SOX emissions in California 
(CA) [39] and possibly in other states in the western US 
during summer, the 2002 NEI showed much higher 
emissions in those regions in both summer and winter, 
indicating that the large negative NMBs (–60% to –20%) 
in  predictions in the western US are unlikely 
caused by underestimation in SOX emissions in summer 
but the large positive NMBs (30% - 100%) in this region 
may be caused by possible overestimation in SOX emis- 
sions in winter. 

2SO 



2SO 

2SO 

2SO 

2

2
4SO 

2
4SO

Table 2 summarizes the overall seasonal statistical 
performance of CMAQ for all PM2.5 species including 

4  over different networks and sub-regions from 
three domains (i.e., CONUS, EUS, and WUS). The per- 
formance for 4  is the best among all PM2.5 species, 
with domain-wide NMBs typically within ±18% in dif- 
ferent seasons in all sub-regions except for regions “Cen- 
tral” and “West” from the 36-km simulation and the re- 
gion “WUS” from the 12-km simulation. The NMEs are 
moderate, ranging from 20% to 50% throughout the year. 
Several studies that used the 2001 NEI reported that 
CMAQ v4.4 underpredicted 4  in winter and spring, 
overpredicted it in fall, either overpredicted or slightly 
underpredicted it in summer [8,11,13]. In contrast, our 
results show that CMAQ underestimates 4SO

timates it over the IMPROVE sites in winter, which are 
more consistent with the study of Luo et al. [40] that 
used CMAQ v4.7. This discrepancy is likely due to the 
updates in both convective cloud module and aerosol dry 
deposition module in CMAQ v4.6. Appel et al. [13] in- 
dicated that the use of ACM2-cloud scheme (in CMAQ 
v4.6 or later) over the RADM-cloud scheme (in CMAQ 
v4.4) may result in less aqueous production of 4

2SO   
and the changes in aerosol dry deposition calculation in 
the new version of CMAQ may lead to higher dry depo- 
sition velocity and hence more 4SO  removal. More- 
over, the CMAQ model bias in this study can be partially 
explained by the errors of MM5 in the predictions of 
precipitation and wet depositions. For example, MM5/ 
CMAQ tends to overestimate domain-wide precipitation 
and wet deposition of 4  with NMBs of 42.5% and 
13.1%, respectively, in summer and underestimate them 
with NMBs of –13.0% and –31.1%, respectively, in win- 
ter (figures not shown). Further, Luo et al. [40] reported 
that the convective precipitating cloud fraction and cloud 
water contents have been overestimated by CMAQ v4.6, 
which leads to an excessive scavenging of 

2

2SO 

2
4SO  .  

3.2.2.2. Nitrate 
Similar spatial plots of NMBs for 3  at the IM- 
PROVE and STN sites are shown in Figures 3(c)-(d). In 
winter, CMAQ tends to overpredict 3  concentra- 
tions in the eastern US where NMBs often exceed 20% 
and it tends to underpredict in most of the western US. In 
summer, underpredictions of 3  occur over almost 
ll the CONUS domain. As shown in Table 2, CMAQ 

NO

NO

NO  in al- 
most all the seasons (particularly in summer) and overes-  a   
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Figure 3. Spatial plots of NMBs for  ((a) and (b)), 2
4SO 

3NO  ((c) and (d)), 4NH  ((e) and (f)), EC ((g) and (h)), and OC ((i) 

and (j)) from the 36-km simulation over CONUS, and PM2.5 ((k)-(n)) from the 12-km simulation over WUS and EUS for win-
ter (left panel) and summer (right panel) 2002. 
 
performance for 3  is much worse than that for 

4 . NMBs and NMEs are much larger. Domain-wide 
NMBs and NMEs can be up to 85.4% and 139.9%, re- 
spectively. The model biases may be partially associated 
with the uncertainties in NH3 emissions, which are more 
rudimentary than those of other species such as NOX, 
particularly in its monthly variation that is poorly char- 
acterized [41]. Model performance with respect to 3

NO

2SO 

NO

2002 NEI v3. The more accurate monthly-derived NH3 
emissions by Carnegie Mellon University NH3 emission 
model are much higher in summer and lower in winter 
compared to the traditional NH3 emission inventories 
[14,42] and can be used to improve model performance 
in the future. Other important reasons include the high 
uncertainties in gas/particle partitioning simulated by 
ISORROPIA in CMAQ and the biases in the predictions 
of 3

  
in this study suggests that NH3 emissions based on the 
2002 NEI v3 are probably too low for summer and too 
high for other seasons, which was reported for previous 
versions of NEI in the literature [6] but remains in the  

NO  wet deposition fluxes. CMAQ tends to under- 
estimate the 3NO  wet deposition amounts throughout 
the whole year with NMBs of –23.2%, –25.7%, –42.8%, 
and –19.2% for winter, spring, summer, and fall, respec- 
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tively. Finally, the large model biases and errors in 3NO  
predictions could also be due in part to the uncertainties 
in the measurements, especially in summer. In fact, both 
modeled and observed 3NO  concentrations are very 
low in summer and the model biases are comparable to 
the uncertainty level (roughly ±0.5 μg·m–3) of filter-based 
routine measurements [43]. 

3.2.2.3. Ammonium 
As shown in Figures 3(e)-(f), since 4  in the am- 
bient atmosphere is generally present as (NH4)2SO4 (or 
NH4HSO4) and NH4NO3, the spatial pattern of 

NH

4NH  is 
more like the combined pattern of  and 3

2
4SO  NO  in 

winter when both (NH4)2SO4 and NH4NO3 concentra- 
tions are high and more similar to that of 4

2SO   in sum- 
mer when (NH4)2SO4 is dominant. In winter, CMAQ 
overpredicts 4  concentrations in the eastern US 
where NMBs often range from 20% to 60%. It underpre- 
dicts NH4

+ concentrations in the most of the western US, 
where NMBs range from –60% to –20%. In summer, 
CMAQ shows a better performance over space, with 
slight overpredictions of 4  over the eastern US 
(with most NMBs of 0 to 40%) and slight underpredic- 
tions over the western US (with most NMBs of –40% to 
–20%), because  is dominant by (NH4)2SO4 and 
the performance of  in summer is much better than 
that of 3  in winter. Table 2 shows a fairly good 
performance for 4 , which is slightly worse than 

 but better than 3 . The domain-wide NMBs 
and NMEs range from –2.3% to 39.9% and 25.0% to 
56.3%, respectively, over different networks in different 
seasons. The statistics are consistent between STN and 
CAST-NET, with domain-wide positive NMBs in most 
seasons except for summer over both networks. As dis-
cussed above, the uncertainty associated with NH3 emis-
sions is indicative of the main reason for the model bias 
of 4 . Additionally, the underestimation of 4

NH
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NH

NH



NO
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NH   
wet depositions throughout the whole year (NMBs are 
–47.5%, –26.4%, –8.9%, and –22.2% for winter, spring, 
summer, and fall, respectively) can explain in part the 
overestimation of NH4

+ in most seasons. 

3.2.2.4. Elemental and Organic Carbon 
As shown in Figures 3(g)-(h), CMAQ moderately over- 
predicts EC at the IMPROVE and STN sites in the east- 
ern US with NMBs generally between 20% and 50% and 
underpredicts it in the western US with NMBs between 
–50% and –20% in winter. As shown in Figures 3(i)-(j), 
CMAQ has the tendency to overpredict OC over the 
western US, Midwest, and New England areas especially 
for the IMPROVE sites. Underpredictions are also evi- 
dent over most STN sites in the eastern US. While in 
summer, significant underpredictions are observed across 
the whole domain, particularly over the eastern US and 
the worst NMBs normally occurring over the STN sites.  

The model seems to perform slightly better in winter 
(colder months) than summer (warmer months). 

The seemingly worse performance at the STN sites for 
OC is due to the fact that the measurements are not blank 
corrected for carbon on the background filter (i.e., re- 
moving the adventitious carbon from the filter), which 
could add 20% - 40% to the observed OC concentrations 
[43]. In addition to that, STN BC and OC measurements 
use a different thermo-optical protocol compared with 
the IMPROVE network that may cause larger uncertain- 
ties in splitting BC/OC [39]. Therefore, only OC and EC 
concentrations from IMPROVE are used to evaluate the 
model performance in Table 2. As shown, CMAQ ap- 
pears to moderately underpredict OC in summer and 
overpredict it in winter with domain-wide NMBs of 
–41.7% and 45.3%, respectively, and slightly underpre- 
dict in both spring and fall with NMBs of –2.2% and 
–11.9%, respectively. The errors associated with OC are 
relatively high with domain-wide NMEs ranging from 
54.2% to 84.1%. On the other hand, the overall model 
per- formance for EC is much better than OC. The model 
performance for OC and EC shown here is somewhat 
similar to that of Tesche et al. [11] and Appel et al. [13], 
in which they also found that the largest underpredictions 
of OC and EC occur in the summer and fall. However, 
the overprediction of OC and EC in winter is more con- 
sistent with Karydis et al. [43]. Since the major compo- 
nent of organic aerosols in winter is POA. Both POA and 
EC are mainly affected by emissions, vertical mixing and 
deposition. The overprediction of OC and EC in winter is 
believed to be more related to the poor model representa- 
tions of those processes. Some studies [10,44] indicated 
that the poor temporally-allocated wildfire emissions may 
contribute to the biases in OC and EC predictions. Sev-
eral studies based on 1999 NEI v3 indicated underes- 
timation in wildfire emissions [8,45]. The emissions of 
EC and POA from the 2002 NEI v3 are much lower than 
those from the 1999 v3, particularly in the western US, 
indicating a possible underestimation in wildfire emis- 
sions to a greater extent than the 1999 v3 in this region, 
due likely to the use of older fuel loading information 
(George Pouliot, US EPA, personal communication, 
2011). During the summer months when SOA concentra- 
tions are more comparable with those of POA, the model 
underpredictions for OC could also be attributed to the 
underpredictions of photochemically-produced SOA aside 
from the uncertainties in the emissions of POA and SOA 
precursors [13]. This partly explains the worse model 
performance of OC, as compared with EC in summer. 
CMAQ v4.6 does not simulate SOA formation from the 
oxidation of several important precursors such as iso-
prene and sesquiterpenes, both of which may contribute 
substantially to the ambient OC concentrations [7,41]. In 
addition, the uncertainties associated with the measure- 
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ment techniques of carbonaceous aerosols (e.g., OC and 
EC split) and the factor used to convert simulated organic 
matter (OM) to OC may also cause the discrepancies be- 
tween simulations and observations [13].  

3.2.2.5. PM2.5 
The accuracy of PM2.5 predictions in CMAQ is a com- 
posite of the accuracies of predictions of individual par- 
ticulate species concentrations. Figures 4(a)-(b) and 3(k)- 
(n) show the spatial plots of NMBs for PM2.5 at the IM- 
PROVE and STN sites from the 36-km simulation over 
CONUS and the 12-km simulations over WUS and EUS, 
respectively. CMAQ overpredicts PM2.5 in winter and 
underpredicts it in summer for all domains. In winter, the 
spatial variability of biases is more evident. The rela- 
tively high biases occur over the northeastern US, Great 
Lakes, and Midwest with NMBs generally >50% at 
36-km and >30% at 12-km, indicating some improve- 
ments using a finer grid resolution of 12-km. The under- 
prediction of PM2.5 in summer is more systematic with 
more than 95% of sites having negative biases. NMBs 
are typically larger (between –60% and –20%) in the 
western US than in the eastern US (–40% to –10%) at 
36-km, with some improvement at the 12-km. 

As shown in Figures 4(c)-(d), both CMAQ and ob- 
servations show higher monthly PM2.5 concentrations at 
the STN sites than the IMPROVE sites throughout the 
year because most of the IMPROVE sites are located in 
remote and rural areas and the STN sites are located in 
more polluted urban areas. CMAQ underpredicts PM2.5 
concentrations during the warmer months (i.e., April 
through September at the IMPROVE sites and May 
through August at the STN sites) but overpredicts during 
the colder months. Figures 4(e)-(f) show the stacked bar 
charts of modeled and observed average PM2.5 concen-
trations and the contributions of individual species con-
centrations (i.e., , 3 , 4 , total carbon (TC), 
and unspeciated PM2.5) to the total PM2.5 concentration at 
the STN sites in both winter and summer. In winter, TC 
is the most abundant (33.2%) PM2.5 component, fol- 
lowed by 3  (21.2%), SO  (19.8%), other unspe- 
ciated PM2.5 (14.3%) and 4

2
4SO 

The reasons for this underprediction were discussed ear- 
lier in this section. Since the majority of the other unspe- 
ciated PM2.5 is primary aerosols, the model biases espe- 
cially in winter are very likely due to errors in unspeci- 
ated primary emissions. 

As shown in Tables 2 and 3, both NMBs and NMEs 
are relatively low over most sub-regions. Domain-wide 
NMBs range from –22.8% (summer) to 29% (winter) 
over the STN network and from –33.8% (summer) to 
74.3% (winter) over the IMPORVE network over CONUS. 
NMEs are generally lower than 50% at both STN and 
IMPROVE sites throughout the year except for winter. 
There are currently no universally-accepted or EPA-re- 
commended quantitative performance criteria for PM2.5. 
However, some specific model performance criteria have 
been recommended by other modeling studies [6,34]. 
Generally ±30% for model biases and 50% for model 
errors can be considered as satisfactory performance and 
the values below or beyond them should be considered as 
good and poor performance, respectively. The 2002 MP 
modeling platform demonstrates an overall good per-
formance in predicting PM2.5 except for summer at the 
IMPROVE sites and winter at all sites. It also provides 
comparable or even better performance because of the 
state-of-science treatments in the model as well as more 
accurate model inputs. 

3.3. Hazardous Air Pollutants at the Surface 

3.3.1. Mercury 
There were no routine networks existing with measure- 
ments of ambient Hg concentrations and dry depositions 
over the US back in 2002. MDN established by NADP 
was the only network that regularly monitored Hg wet 
deposition with most of its sites scattered throughout the 
remote areas in the US and Canada. The model evalua- 
tion will thus focus on the comparison of modeled Hg 
wet deposition against the MDN measurements, which is 
considered to be sufficient to provide a general concept 
of model performance for Hg [22,46]. Only sites where 
data are available more than half the weeks in a season 
are utilized for the seasonal performance evaluation in 
this study. Figures 5(a)-(b) display the spatial variation 
of NMBs for Hg wet deposition against data from the 
MDN network for winter and summer 2002. As shown, 
most MDN sites are clustered in the eastern and Midwest 
US. In winter, NMBs are much more scattered with 
NMBs from 10% to 50% occurring over the eastern US 
and some very high NMBs (>100%) occurring at several 
sites in both the western and eastern US. Some relatively 
small negative biases (NMBs of –20% to –10%) are ob- 
served in the eastern US and large negative biases 
(NMBs of about –60%) also occur in the Midwest. How- 
ver, the overall trend for Hg wet deposition in CMAQ is 

NO NH

2
4


NH
NO

  (11.6%) from the STN 
observations. However, CMAQ predicts the highest other 
unspeciated PM2.5 (36.7%), which contributes to the most 
to the PM2.5 overprediction in winter. The agreement be- 
tween predicted and observed PM2.5 concentrations with- 
out accounting for the contribution of other unknown 
PM2.5 would be considerably better with a slight positive 
bias from CMAQ. In summer, both TC (34.2%) and 

 (29.9%) are the dominant PM2.5 component, fol- 
lowing by other PM2.5 (21.2%), 4  (9.9%), and 
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dicts concentrations of 
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Figure 4. Comparison of the simulated and observed PM2.5 concentrations at the IMPROVE and STN sites in 2002. Spatial 
plots of NMBs from the 36-km simulation over CONUS for winter and summer in 2002 ((a) and (b)); Monthly box plot for 
total PM2.5 concentrations with 25% and 75% quartiles and median values over (c) the IMPORVE sites; and (d) the STN 
sites in 2002 (triangle and dark shading denote CMAQ, square and light shading denote observations, and the numbers 
above each bar indicate the number of simulated/observed data pairs for each month); Stacked bar charts of total mass con- 
centrations of PM2.5 and its major components over the STN sits for (e) winter; and (f) summer in 2002. The percentages in-
dicate the contribution of each species to the total PM2.5 mass. 
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(a)                                                    (b) 

   
(c)                                                      (d) 

   
(e)                                                      (f) 

Figure 5. Spatial plots of NMBs for Hg wet deposition (top), formaldehyde mixing ratio (middle), and acetaldehyde mixing 
ratio (bottom) for winter (left panel) and summer (right panel) 2002. 
 
an overprediction in winter. In summer, the Hg wet 
deposition is generally underpredicted at more than 80% 
of the MDN sites, especially over the southern US with 
NMBs of –70% to –10%. For annual predictions of Hg 
wet deposition fluxes, more than half of data pairs are 
within the factor of 2 reference lines (figure not shown) 
with an R value of 0.45. As shown in Table 3 and Fig- 
ure 6(a), CMAQ does reasonably well in simulating the 
monthly and seasonal Hg wet deposition over CONUS, 
with domain-wide seasonal NMBs of –28.2% to 28.9% 
and NMEs of 66.9% - 84.0%. The model performance is 
slightly better in spring and fall than in summer and win- 
ter. 

The evaluation results of the present study are more in 
line with those from Gbor et al. [46] and Bullock et al. 
[18], and, show an improvement over those reported by 
Bullock and Brehme [22]. The Hg wet depositions in 

Bullock and Brehme [22] were significantly overpre- 
dicted for summer with an NMB of 60.2% and moder- 
ately overpredicted for spring with an NMB of 25.9%, 
compared to –28.2% and 12.4% in this study for summer 
and spring, respectively. The performance for precipita- 
tion is very similar between the two studies. The im- 
provement of model performance is thus more likely 
related to the science updates in CMAQ-MP. These up- 
dates include: 1) The modification of the products and 
reaction rates for reactions of Hg0 with hydrogen perox- 
ide (H2O2), O3, and hydroxyl radical (OH); 2) The ex- 
plicit treatment of Hg0 between the air and various un-
derlying surfaces (i.e., the dry deposition velocity is no 
longer zero as assumed in the previous Hg module); 3) 
The consideration of recycling or re-emitted Hg0 from the 
deposited Hg [47]. These updates are made to reflect the 
up-to-date science published in the peer-reviewed litera- 
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Figure 6. Monthly box plot for (a) Hg wet deposition, concentrations of (b) HCHO, (c) ALD2, (d) Benzene, (e) Butadiene13, 
and (f) Particulate lead with 25% and 75% quartiles and median values in 2002 (triangle and dark shading denote CMAQ, 
quare and light shading denote observations, and numbers over each bar represent the numbers of observations). s 
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ture [18]. Despite the model improvement, there still in CMAQ, should not occur under ambient conditions. 

 
e, including HCHO, 

n be generated or 

 

exist large discrepancies between CMAQ and MDN ob- 
servations. The wet deposition of Hg is directly deter- 
mined by the precipitation amount simulated by MM5 
and the aqueous-phase concentrations of dissolved Hg(II) 
and absorbed PHg simulated by CMAQ. The model bi- 
ases in Hg wet deposition predictions are thus deter- 
mined by the errors in predicting those variables. How- 
ever, as shown in the previous section, MM5 underpre- 
dicts precipitation in winter but overpredicts it in summer, 
which cannot help explain the overprediction of Hg wet 
deposition in winter and underprediction in summer. This 
means that the discrepancies between model and obser- 
vations are more likely due to the predicted Hg(II) and 
PHg concentrations, which can be further attributed to 
the uncertainties in emission inputs, BCONs, and Hg 
chemistry treatments in the model. For example, as indi- 
cated by Gbor et al. [46], most modeling studies on Hg in 
the US have excluded a detailed treatment of Hg emis- 
sions from natural sources including vegetation, soil, and 
water. They estimated that the total natural mercury 
emission was 230 tons in 2002 based on their Hg natural 
emission model, while the anthropogenic emission was 
126 tons based on the 1999 NEI. The total Hg emissions 
from the 2002 NEI are only 112 tons (the US EPA 2002 
NEI booklet) which is predominated by anthropogenic 
emissions. Although the natural Hg emissions based on a 
modified Biogenic Emission Inventory System (BEIS) 
model [48] are also included in the 2002 MP modeling 
platform, the estimation may still be too low, especially, 
since Lin et al. [48] estimated that Hg emissions from 
vegetation ranged from 31 to 127 tons with the best es- 
timation of 44 tons in 2001. This underestimation of 
natural Hg emissions is much more evident in the sum- 
mer season during which meteorology, vegetation, and 
soil conditions favoring the generation of Hg emissions. 
A recent study by Pongprueksa et al. [17] showed that 
response of CMAQ to change of BCONs of Hg species, 
particularly Hg0, was strongly linear and they found an 
average of 1 ng·m–3 of Hg0 in BCONs could result in an 
increase of 0.81 ng·m–3 in the monthly average total Hg 
concentrations and 1270 ng·m–2 in the monthly average 
total deposition compared with clean condition of Hg0. 
This indicates that the uncertainties embedded in GEOS- 
Chem Hg simulation may contribute significantly to 
CMAQ predictions. Bullock et al. [18] also showed that 
CMAQ-Hg with BCONs from another CTM gave better 
performance than those from GEOS-Chem. It is known 
that the majority of Hg wet deposition are attributable to 
dissolved Hg(II), thus an accurate estimation of their 
concentrations is essential for accurate Hg wet deposition 
predictions. Gardfeldt and Jonsson [49] argued that Hg(II) 
reduction by HO2 in aqueous-phase chemistry, which is 
the most important chemical removal pathway for Hg(II)  

Lin et al. [16] and Pongprueksa et al. [17] tested this 
assumption by replacing the aqueous Hg(II)-HO2 reduc-
tion in CMAQ by two other different gas-phase reduction 
pathways (i.e., Hg(II) reduction by CO or photochemi-
cal-reduction of Hg(II)) separately. They found that those 
two new pathways generated more Hg wet deposition in 
summer and produced significantly better model agree- 
ment with the wet deposition measured by the MDN 
network. Finally, the missing reactions of Hg with other 
oxidants, such as bromines, in CMAQ may also contrib-
ute to the model uncertainties [50]. 

3.3.2. Other Air Toxics Compounds 
1) There are two groups of gaseous HAPs species

treated in CMAQ-MP. The first on
ALD2, 1,3-butadiene, and acrolein, ca
destroyed and then influence the concentrations of O3 
and radicals via reactions. The second one, including the 
rest of species and serving as tracers, is only destroyed 
via chemical reactions with O3 and radicals but does not 
alter the concentrations of those oxidants. A modeling 
approach analogous to tracers in the gas-phase is used for 
the aerosol-phase HAPs such as diesel PM, lead, and 
chromium. The emissions of primary components of those 
species are tracked. Similar to EC, they are assumed to 
be chemically inert and only undergo microphysical and 
deposition processes, they therefore do not participate in 
cloud chemistry and have no effects on the rates of those 
processes (see CMAQ release note,  
http://www.cmascenter.org/help/model_docs/cmaq/4.6/H
AZARDOUS_AIR_POLLUTANTS.txt). The approach 
taken above has its limitation. For example, Hutzell and 
Luecken [21] indicated that the hexavalent and trivalent 
states of chromium mass exchange might occur through 
chemistry within cloud droplets. However, the kinetics 
for that process is not well understood currently and will 
only be considered for future model development.  

2) We therefore select 6 representative and also obser- 
vationally available species including five gases and one 
aerosol species to assess the model performance of 
CMAQ-MP in predicting the HAPs. As shown in Fig- 
ures 5(c)-(d), CMAQ-MP tends to underpredict HCHO 
at most NATTS sites in both winter and summer. Similar 
to the MDN sites, most NATTS sites are located in the 
eastern US and the model performance evaluation may 
not be representative for the western US. As shown in 
Figures 5(e)-(f), CMAQ-MP underpredicts ALD2 mix- 
ing ratios in winter while overpredicts them in summer at 
most sites. The NMBs of ALD2 in winter are similar to 
those of HCHO in spatial distributions but smaller in 
magnitude with a range of –70% to –30%. The NMBs in 
summer range from 20% to 60% with some extreme 
values occurring over Tennessee and South Carolina. 
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Figures 6(b)-(f) show the monthly concentrations be- 
tween CMAQ and observations and Table 3 shows the 
seasonal statistics for HCHO, ALD2, benzene, 1,3-buta- 
diene, acrolein, and particulate lead. The results show 
systematic underpredictions for most species except 
ALD2 throughout the year. No standard performance 
criteria are recommended by the US EPA and literature 
for HAPs modeling. Based on performance criteria used 
for O3 evaluation, the concentrations of HCHO and ben- 
zene are moderately-to-significantly underpredicted with 
NMBs of –53.1% (spring) to –34.4% (winter) for HCHO 
and –54.7% (fall) to –42.4% (summer) for benzene. That 
of ALD2 performs much better, with NMBs of –11.8% 
(fall) to 21.9% (summer). Based on performance criteria 
used for PM2.5 evaluation, the concentrations of particu- 
late lead are also significantly underpredicted with 
NMBs of –40.1% (winter) to –59.6% (summer). Higher 
NMBs (generally –90% to –75%) and NMEs (>85%) 
occur for 1,3-butadiene and acrolein. The model per- 
formance for all species except for 1,3-butadiene in this 
study is consistent with or better than that reported by 
Luecken et al. [23]. For example, they reported NMBs of 
–52.0% and –39.0% for HCHO, –59.1% and –14.7% for 
ALD2, –39.1% and –69.8% for benzene, and –56.4% and 
–55.9% for 1,3-butadiene, for winter and summer, re- 
spectively. The larger underpredictions in the concentra- 
tions of 1,3-Butadiene are likely because that the CB05 
mechanism used in this study generates more oxidants 
than SAPRC99 used by Luecken et al. [23] and includes 
additional chloride radicals. These additional oxidants 
and radicals will destroy more 1,3-Butadiene and result 
in smaller concentrations. 

3) Overall, the model performance for HAPs is not as 
good as that for CAPs. Several factors may contribute to 
large model biases (mostly underpredictions) for HAPs. 
First, the grid resolution used in this study may be too 
co

 

del performance of the 2002 MP modeling plat- 
ther examined by evaluating 
predictions against available 

tellite measurements can 

 in 
20

arse to resolve the sub-grid phenomena (such as urban 
canopies and sub-grid plumes) frequently associated with 
many HAP species as reported by other studies [51-53]. 
For example, Logue et al. [53] reported that most of air 
toxics compounds measured around Pittsburgh areas 
were characterized by short periods of elevated concen- 
trations or plume events. Some local sources of emis- 
sions (e.g., HCHO) and the highly-reactive precursors 
(e.g., 1,3-butadiene with only a few hours of lifetime) 
may impact the monitors but not be captured in the grid 
average model predictions [23]. Ching et al. [51] also 
found that CMAQ predictions of air toxics are generally 
better (i.e., with higher values) at a horizontal grid reso- 
lution of 4-km than at 36-km. Second, errors in emission 
estimations of HAPs may contribute significantly to 
model biases, especially for those chemically nonreactive 
species (e.g., benzene and various metal particles). As 
indicated by Hutzell and Luecken [21], the uncertainties 

associated with HAPs emissions in the 2002 NEI are 
generally larger than those for CAPs. Note that most of 
HAPs emissions in the 2002 NEI are derived from 
Toxics Release Inventory (TRI). De Marchi and Hamil- 
ton [54] reported that the TRI underestimates lead emis- 
sions by as much as 50% and suggested that it may un- 
derestimate most other metal HAPs emissions since they 
normally share similar sources of emissions. Luecken et 
al. [23] also believed that the underestimation of precur- 
sor emissions (e.g., isoprene) may contribute to the nega- 
tive biases for HCHO and ALD2 in CMAQ. Third, the 
assumption in chemical mechanism and aerosol module 
for HAPs in the current version of CMAQ-MP as de- 
scribed earlier in this section may play a role in the 
model underpredictions. In CB05, the rate of decay for 
most air toxic tracers is affected by OH and NO3 and it is 
difficult to determine how well CB05 reproduces their 
concentrations due to the lack of observations. In par- 
ticular, CMAQ-MP performs poorly for those short-live 
and highly active HAPs (e.g., 1,3-butadiene and acrolein), 
further investigation of the reactions associated with 
those species is warranted. Finally, the errors from meas- 
urements such as sample handling, accuracy of analytical 
standards, and a lack of site density may also contribute 
to the model biases, but the impacts of these factors are 
believed to be smaller as compared with other reasons 
[55].  

3.4. Column Variables 

3.4.1. Column Mass of Gases 
The mo
form above surface is fur
seasonal CMAQ column 
satellite measurements. The sa
provide substantial additional information with more 
complete spatial coverage and can also represent better 
the scale characteristics of model outputs that are aver- 
aged over a grid cell. The satellite dataset used in this 
study are all level-3 monthly-averaged data with various 
resolutions (i.e., 1 × 1.25 for TOMS/SBUV TOR, 1 × 1 
for MOPITT CO column, 0.25 × 0.25 for GOME NO2 
column, 0.5 × 0.5 for GOME HCHO column, and 1 × 1 
for MODIS AOD). The satellite data with different reso- 
lutions are mapped to the Lambert conformal projection 
used in CMAQ using the bi-linear interpolation of the 
NCAR command language. The CMAQ model outputs 
are also processed and averaged at the same time of sat- 
ellite overpasses in order to facilitate the comparison. 

In terms of statistical performance (as shown in Table 
4), CMAQ simulates TORs the best in fall and the worst 
in winter. Figure 7 shows the observed and simulated 
seasonal-mean TORs over the 36-km CONUS domain

02. The observed highest TORs occurred over the  
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Table 4. Seasonal-mean performance statistics for column predictions over the 36-km CONUS domainin 20021. 

Seas 2on Attributes  TOR CO Column NO2 Column HCHO Column AOD 

NMB (%) 6.4 –22.2 –7.5 20.7 –43.2 
Spring 

NME (%) 11.5 22.7 34.3 47.7 49.5 

–18. –23.
Summer 

NME (%) 18.1 24.3 38.1 48.8 44.9 

NMB (%) –3.0 –18.8 20.1 22.3 –17.0 
Fall 

NME (%) 7.2 19.1 51.3 45.3 48.5 

NMB (%) 18.0 –8.9 29.1 –24.9 –39.9 
Winter 

NME (%) 18.3 13.9 52.4 41.7 53.1 

NMB (%) 1 6 –4.5 39.4 –44.6 

1Th for TOR, CO, NO , and HCHO columns are DU, 1017 molecules·cm–2, 1015 molecules·cm–2, and 10  molecules·cm–2, respectively; 
2NMB—Normalized m E—Normalize  error. 

h
west TORs occurred over elevated terrains such as ar- 

the 36-km CONUS 
do
CO columns in winter and spring, especially over the CO  

ur on G
and California. Both observed and simulated CO col- 

domain in 2002. The spatial distribution and seasonal  

e units 2

ean bias; NM

15

d mean

 
North-eastern, Midwest, and Pacific coastal areas and t e so ce regi s, notably the northeastern US, reat Lakes, 
lo
eas around Rocky Mountains in the US. CMAQ fails to 
capture the observed seasonal variations by TOMS/SBUV, 
i.e., simulated maximum and minimum TORs occur in 
spring and fall, respectively, but those observed ones 
occur in summer and winter, respectively. This discrep- 
ancy might be due to the BCONs for O3 used in CMAQ, 
especially in the upper layers that were provided by 
GEOS-Chem, which make the greatest contribution to 
TORs [8]. Other possible factors may include the uncer- 
tainties in both model treatments and the satellite re- 
trieval algorithms. As pointed out by Tong and Mauzerall 
[56], the assumption of zero flux at the top layer of the 
model and the exclusion of the contribution of strato- 
sphere-troposphere exchange (STE) of O3 limited the 
capability of CMAQ to reproduce O3 mixing ratios in the 
upper troposphere. Since TORs only represent about 
10% of the total O3 columns in the atmosphere, they are 
very sensitive to errors in both retrievals of the total O3 
column from TOMS and the stratospheric O3 column 
from SBUV (Fishman et al., 2003). One of the most im- 
portant uncertainties in TOMS/SBUV data lies in the 
definition of tropopause. Stajner et al. [57] indicated that 
the differences of 1 - 2 km in tropopause altitudes can 
yield differences of 10% - 20% in tropospheric O3 col- 
umns (TOCs). They compared TOCs from four different 
definitions of tropopause. One of those tropopauses was 
determined from the lapse rate in the NECP/NCAR re- 
analysis, which is also used by TOMS/SBUV data. They 
found that the differences of TOCs from different tro- 
popause definitions could be up to ~10 DU in summer 
and ~3 - 4 DU in winter over the US. 

Figure 8 shows the observed and simulated seasonal- 
mean tropospheric CO columns over 

main in 2002. Both MOPITT and CMAQ show high 

umns are also low over elevated altitude terrains (i.e., 
Rocky Mountains), which is similar to the TOR results. 
There are also observed elevated CO columns from 
MOPITT over the northeastern Pacific coastal region 
throughout the whole year and with maximum values in 
spring, which is attributed to the long-range transport of 
CO [15,58]. Nevertheless, CMAQ underpredicts CO col- 
umns throughout the whole year with NMBs ranging 
from –23.6% to –8.9% (see Table 4). CMAQ and 
MOPITT CO columns are better correlated in fall and 
summer with R values of 0.76 and 0.62, respectively, de- 
spite moderate underpredictions. Heald et al. [58] pointed 
out that the regional emissions, more specifically bio-
mass burning emissions, could contribute significantly to 
elevated CO levels. The uncertainties in CO emissions 
used in this study could potentially be a major source of 
errors. The examination of seasonal CO emissions used 
in CMAQ shows that the CO emissions are the highest in 
winter, which accordingly contributes to the peak of 
simulated CO columns. On the other hand, the MOPITT 
CO observation (peaks in spring) shows that the CO 
emissions over CONUS, particularly in spring, might be 
too low. Other possible factors such as uncertainties in 
BCONs and MOPITT retrieval methods may also con-
tribute to the discrepancies between model and satellite. 
For example, Heald et al. [58] indicated that the model 
bias in the vertical structure of CO (equivalent with 
BCONs or profile) could be an important source of 
model vs. MOPITT discrepancies. Emmons et al. [29] 
also showed positive biases (19%) of version 3 MOPITT 
retrievals over continents, as compared to oceans, and the 
bias may have been increasing over time. 

Figure 9 shows the observed and simulated seasonal- 
mean tropospheric NO2 columns over the 36-km CONUS 
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Figure 7. Spatial distributions of seasonal-mean TOR from TOMS/SBVU and CMAQ over CONUS in 2002. (a) TOMS/ 
SBUV 36-km; (b) CMAQ 36-km. 
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Figure 8. Spatial distributions of seasonal-mean tropospheric CO columns from MOPITT and CMAQ over CONUS in 2002. 
(a) MOPITT 36-km; (b) CMAQ 36-km. 
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Figure 9. Spatial distributions of seasonal-mean tropospheric NO2 columns from GOME and CMAQ over CONUS in 2002. (a) 
MODIS 36-km; (b) CMAQ 36-km. 
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changes of GOME NO  colum

sons and in the eastern 

nd CMAQ show 
st

high HCHO columns over 

well captured by CMAQ despite some overpredictions. 

 the 
lowest in winter. They, however, display quite different 

utions over the CONUS domain with the 

2

produced by CMAQ, with larger NO2 column amounts 
hown in winter than in other sea

the southeastern US, particularly in summer, which is 
ns are generally well re- GOME measurements show 

s
US than in the western US. Both GOME and CMAQ 
show high NO2 columns over the industrialized and me- 
tropolitan areas throughout the whole year. Those areas 
are correlated very well with NOX emission source re- 
gions (figures not shown), which provides the rationale 
for many studies that used GOME NO2 columns as the 
constraints for emission inventories of NOX [59]. The 
NO2 columns over industrial source regions are the low- 
est in the summer due to a rapid loss by the reaction of 
NO2 with OH. The high winter NO2 columns are likely 
resulted from a combined effect of a decreased loss of 
NO2 via its reaction with OH and slightly increased 
emissions as compared to the summer [30]. CMAQ are 
well correlated with the GOME measurements through- 
out the whole year with R values of 0.74 to 0.85. The 
larger discrepancies (see Table 4) in fall and winter can 
be attributed to several factors including possible overes- 
timation of NOX emissions in those seasons and uncer- 
tainties in model inputs, treatments, and satellite meas- 
urements and retrievals. Boersma et al. [60] and some 
other studies [59,61] showed that different NO2 column 
retrieval approaches may lead to ±5 × 1014 - 1 × 1015 
molecules·cm−2 for additive error and ±35% - 60% for 
relative error over polluted areas, particularly in winter. 
It is also worth noting that unlike TORs, the tropospheric 
NO2 columns are insensitive to the tropopause definition 
because the contributions to NO2 columns from the upper 
troposphere and lower stratosphere are negligibly small 
as compared to those from lower troposphere, especially 
over polluted regions [61]. This may partly explain the 
better performance of this study, since CMAQ typically 
gives more accurate predictions at lower altitudes [15]. 
Despite a small domainwide bias in spring and summer, 
the model performance in terms of both magnitude and 
spatial distribution can be potentially improved with 
more accurate emissions and model treatments. For ex- 
ample, there might also be missing sources of NOX emis- 
sions such as lightning emissions, which could be im- 
portant in spring and summer. Estimations from other 
studies [62] show that the resultant NO2 columns pro- 
duced by lightning can go up to (0.5 - 2.0) × 1015 mole- 
cules·cm–2 over the southern US, the Gulf of Mexico, and 
western North Atlantic in May. As discussed in Zhang et 
al. [8], the plume-in-grid treatment in CMAQ for large 
US power plants can result in improved column NO2 
performance in eastern US in summer.  

Figure 10 shows the observed and simulated seasonal- 
mean tropospheric HCHO columns over the 36-km 
CONUS domain in 2002. Both GOME a

rong seasonal variations of HCHO columns with values 
of about a factor of two higher in summer than in winter. 

The spatial and temporal variability of HCHO columns 
over the southeastern US in the model correlates clearly 
with biogenic and biomass burning emissions (figures 
not shown here) and is believed to be largely driven by 
oxidation of biogenic VOCs (BVOCs) (e.g., isoprene and 
terpene) [63]. As shown in Table 4, CMAQ overpre- 
dicts HCHO columns in all seasons except for winter. 
This discrepancy could be in part due to the relatively 
high yield of HCHO from isoprene and terpene in the 
CB05 chemical mechanism, particularly in warm seasons 
and uncertainties in the emission inventory, particularly 
for biogenic emissions. More importantly, according to 
Stavrakou et al. [63], the GOME HCHO columns re- 
trieved by Belgian Institute for Space Aeronomy (BIRA)/ 
Royal Netherlands Meteorological Institute (KNMI) used 
in this study are about 4 × 1015 molecules·cm–2 (by 30%) 
lower in summer over the eastern US and about 2 × 1015 
molecules·cm–2 higher in winter over the US than an- 
other set of GOME columns retrieved by Harvard Uni- 
versity [64], which used trace gas profiles from GEOS- 
Chem model and a different approach to calculate air 
mass factor. This indicates that the uncertainties in satel- 
lite retrievals may also be a contributor to the discrep- 
ancy between CMAQ and satellite HCHO columns. 

3.4.2. AOD 
Figure 11 shows observed and simulated seasonal-mean 
AODs over the 36-km CONUS domain in 2002. Both 
MODIS and CMAQ AODs show consistent seasonal 
variations with the highest values in summer and

spatial distrib
most noticeable differences in the western US. There is a 
persistently high level of AODs that is up to 0.6 in sum- 
mer and spring over the northwestern US, western US, 
and northern Mexico observed by MODIS in 2002. In 
contrast, CMAQ AODs are much lower (by a factor of 3 
- 4) over those regions with only up to about 0.15 in 
summer. In addition, CMAQ did not reproduce elevated 
AODs (with values of up to 0.3) over Pacific and off the 
Pacific coast observed by MODIS in spring as the results 
of trans-Pacific transport of Asian air pollutants and dust 
storms, potentially due to the errors in lateral BCONs. 
CMAQ does predict the enhanced AODs in summer over 
the eastern US observed by MODIS although they are 
lower by a factor of two than MODIS. Statistically, 
CMAQ underpredicts AODs for all seasons with NMBs 
of –44.6% to –17.0%. These findings are consistent with 
those of Zhang et al. [8]. Several possible reasons may 
explain the discrepancies between MODIS and CMAQ 
AODs. First, the lack of model treatment of mineral dust       
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(a)                                                      (b) 

Figure 10. Spatial distributions of seasonal-mean tropospheric HCHO columns from GOME and CMAQ over CONUS in 
2002. (a) GOME 36-km; (b) CMAQ 36-km. 
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(a)                                                      (b) 

Figure 11. Spatial distributions of seasonal-mean AODs from MODIS and CMAQ over CONUS in 2002. (a) MODIS 36-km; 
(b) CMAQ 36-km.   
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in CMAQ may lead to the und

 concentrations, particularly the un- 

being

proaches are embedded in 
grated process rate (IPR) analy- 
n rate (IRR) analysis. IPRs as- 

tions of controlling processes to the formation and de- 

APs and HAPs species are 

chemical characteristics are examined through IRR ana- 

 processes (the net effect of 
ransfer and coagulation), emissions, 
cloud processes (the net effect of 

ndicating the higher wind 
sp

over

 

erprediction of AODs over struction of the selected C
the arid areas of the western US. Second, the inaccurate 

redictions of PM2.5

quantified through IPR analysis and the seasonal photo- 
p
derprediction of 2

4SO   and OC (as shown in Section 3.2) 
over the southeastern US can contribute significantly to 
the underestimate of AOD in the eastern US. Third, there 
are uncertainties in BCONs of PM2.5 and its components. 
Kaufman et al. [65] derived the background AODs to be 
0.052 at 500 nm over the Pacific Ocean by using Aerosol 
Robotic network (AERONET) data. However, the aver- 
aged CMAQ AODs over the Pacific Ocean in this work 
are only from 0.015 to 0.039 in different seasons. This 
reflects that the BCONs for PM2.5 species might be too 
low from GEOS-Chem. Fourth, uncertainties exist in the 
empirical equations and the associated parameters for the 
AOD calculation. For example, the equations used in this 
study do not explicitly consider the contribution of 

4NH . They also completely exclude the other fine-mode 
inorganic aerosols and coarse-mode aerosols (e.g., soils 
and sea salts). A set of modified empirical equations are 

 developed and will be applied in the future work to 
improve the model-derived AODs (Wang and Zhang, 
Implementation of dust emission and heterogeneous che- 
mistry into the Community Multiscale Air Quality Model 
and an initial application to April 2001 Asian dust storm 
episode, manuscript in review). Finally, similar to other 
satellite data, there are limitations and uncertainties in the 
MODIS data used in this work. For example, according 
to Remer et al. [32], the uncertainty of MODIS monthly 
AODs (denoted as τ) can be up to ±0.05 ± 0.15τ over 
land because of clouds and surface reflectance. More 
recently, Drury et al. [66] found that there are some er-
rors in the surface reflectance estimates in MODIS op-
erational AOD products used in this study, which can 
lead to high biases of AODs especially over the western 
and central US. Their results by using improved AOD 
retrieval algorithm showed more consistent pattern as our 
CMAQ AODs in summer. 

4. Process Analysis 

Two process analysis ap
CMAQ and they are inte
sis and integrated reactio
sess the net effects of each atmospheric process simu- 
lated in CMAQ while IRRs calculate the rates of change 
of species concentration due to individual gas-phase re- 
actions and track the chemical transformation pathways. 
Both IPRs and IRRs have been used to study various 
issues such as O3 chemistry and transport [9,67,68], re- 
gional and long range transport of air pollutants [9,15], 
and controlling processes/process budgets of different air 
pollutants [69,70]. In this section, the relative contribu- 

lysis for January (representing winter) and July (rep- 
resenting summer) 2002. 

4.1. IPR Analysis 

The original outputs of IPRs are combined to represent 
several major processes including horizontal transport 
(sum of horizontal advection and diffusion), vertical 
transport (sum of vertical advection and diffusion), gas- 
phase chemistry, aerosol
gas-to-particle mass t
dry deposition, and 
cloud attenuation of photolytic rates, convective and non- 
convective mixing and scavenging by clouds, aqueous- 
phase chemistry, and wet deposition). The process con-
tribution can be either positive or negative, indicating 
build-up or removal, respectively, of a species concentra- 
tion due to a specific process. 

Figure 12 depicts the process budgets for selected 
CAPs species including NOX, O3, 3NO , and PM2.5 in 
PBL over different sub-regions. The process budgets for 
NOX in both months show very similar variation with 
major contribution coming from emissions and major 
removal by chemistry. The contribution from transport 
seems to be higher in winter, i

eed in cold season. The emission rates for NOX are the 
highest over Midwest and the lowest  the western US 
in both months. The removal rate of NOX due to 
gas-phase chemistry is comparable between winter and 
summer, due to different reasons. In winter, the removal 
of NOX is mainly caused by the strong titration of O3, but 
in summer, NOX is mainly removed by radicals. In con- 
trast, the processes contributing to O3 show a strong sea- 
sonality, with much higher formation of O3 from gas- 
phase chemistry over all sub-regions in summer than in 
winter. In summer, the highest chemistry production over 
Midwest is consistent with the highest precursor emis- 
sions (e.g., NOX). The vertical transport and dry deposi- 
tion are two major removal processes for O3 over all 
sub-regions. As expected, the contribution from chemis- 
try is much weaker in winter. The horizontal/vertical 
transport instead plays more important role in the O3 
budgets. The high values of O3 build-up from vertical 
transport and removal from horizontal transport over the 
western US indicate the persistent period of high pres- 
sure system locating over the western US in January 
2002 that transports more O3 from the free troposphere to 
the PBL and horizontally out of western US. The oppo- 
site vertical transport for O3 over the western US in 
summer indicates the low pressure system and downward 
turbulent transport. For 3NO , the aerosol process is the  
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Figure 12. The monthly-mean contributions of individual processes to the concentrations of selected criteria air pollutants: (a) 

3, (c) 
3NO , and (d) PM2.5 over different sub-re s of CONUS domain in January (left panel) and July (right 

HORZ, VERT, DDEP, CLDS, CHEM, AERO, EMIS denote the processes of horizontal transport, vertical 
transport, dry deposition, cloud process, chemistry, aerosol c istry, and emissions, respectively.     

NOX, (b) O

panel) 2002. 

gion
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dominant contributor over most sub-regions in winter. 
While in summe  higher temperature prevents HNO3 
from condensing onto the existing particle surface to 
orm 3NO , although the HNO3 concentrations are high- 

show a strong seasonality, especially for aerosol and 
cloud processes and to a lesser extent for horizontal and 
vertical transport. The aerosol process contributes to the 
formation of PHg and the clou

r the

verti

ortan

 US i

of ot

 

d process contributes to f
er. In particular, over the central and western US, aerosol 
process removes significant amount of 3NO  via eva- 
poration and desorption. Besides aerosol process, hori- 
zontal/ cal transport and cloud processes over most 
sub-regions in winter and vertical transport over the cen- 
tral/western US in summer also play imp t roles in 
the 3NO  budget. The processes contributing to PM2.5 
also show a strong seasonality. The overall emissions are 
comparable between two months with higher emission 
contributions over northeastern, southeastern, and Mid- 
west n winter and higher emission contributions over 
central and western US in summer. The removal of PM2.5 
due to dry deposition is higher in summer than winter 
due to the general higher dry deposition velocity of aero- 
sols over more vegetated areas. The changes of PM2.5 due 
to other processes are complicated over different sub- 
regions in both months. For example, the aerosol process 
tends to remove PM2.5 over the northeastern US and 
southeastern US, where ocean grid cells are included in 
the IPR calculation in winter because of a negative con- 
tribution to aerosol process of particulate-phase chloride 
(figure not shown) due to the fact that the reaction 
NaCl(s) + HNO3(g)  NaNO3(s) + HCl(g) is favorable 
in winter. The negative budget of PM2.5 due to aerosol 
processes over the western US in summer is mainly due 
to the loss of 3NO  and SOA (figures not shown), both 
of which have relatively low precursor emissions and 
high removal rates due to gas-particle equilibrium favor- 
ing their volatility to the gas phase over that region. Si- 
milar to most her species, horizontal/vertical trans- 
port are also important for PM2.5.  

Figure 13 depicts the process budgets for selected 
HAPs species Hg(II), PHg, HCHO, and particulate lead 
in PBL over different sub-regions. The gas-phase chem- 
istry, emission, and horizontal/vertical transport (except 
horizontal transport in the Midwest and western US and 
vertical transport in the central US) dominate the pro- 
duction of Hg(II) and dry deposition and cloud processes 
dominate the removal of Hg(II) over most sub-regions in 
both months, but the magnitude of IPR for each process 
has a strong seasonality. For example, the IPRs of chem- 
istry are much higher in summer because of higher oxi- 
dant levels. The IPR of dry deposition is comparable to 
that of cloud processes in both months, indicating that 
the wet deposition may also contribute significantly to 
the removal of Hg(II). The signs of IPRs for horizon- 
tal/vertical transports are more diverse in winter than 
summer, indicating a much different wind field pattern in 
some regions in winter. The IPRs of emissions for PHg 
also indicate that the major sources of Hg are located in 
the northeastern and Midwest US. The IPRs for PHg also 

the removal. The contributions from both processes are 
much higher in summer due to higher concentrations of 
oxidants, which lead to higher aqueous- and particu- 
late-phase oxidation of Hg. To a lesser extent, the re- 
maining processes also play some roles in the PHg budg- 
ets. The IPRs for HCHO show a strong seasonality with 
much higher contributions in summer than winter. Both 
emission and chemistry contribute to the formation of 
HCHO. The IPRs for chemistry, however, are about 5 to 
10 times higher over different sub-regions in summer 
than winter, resulting from much higher direct and pre- 
cursor emissions and rates of formation from precursors 
due to a stronger oxidation capability. The vertical trans- 
port, dry deposition, and cloud processes are the major 
processes to remove HCHO from the atmosphere. Unlike 
other HAPs, the seasonality for particulate lead is not 
evident. Emission is the major or only source for the 
build-up of lead over almost all sub-regions, indicating 
that the uncertainties in emission inventory may contrib- 
ute significantly to model biases as discussed in the pre- 
vious section (see Table 3). Cloud processes act as a 
major removal process for particulate lead followed by 
horizontal transport, vertical transport, and dry deposi- 
tion. The contribution from aerosol processes is zero due 
to the assumption of chemical inertia of lead in CMAQ. 
The vertical transport for particulate lead and PHg plays 
a different role, indicating that the long-range transport 
of PHg is more important than particulate lead. 

4.2. IRR Analysis 

CB05 used in this study include 219 reactions. The IRRs 
of those reactions are grouped into 43 products according 
to the reactions for radical initiation, propagation, pro- 
duction, and termination (see Table 1 from Zhang et al. 
[9] for most products). Figure 14 shows the monthly- 
mean spatial distributions of photochemical indicators of 
surface layer 

2 2 3H O HNO HO/NO2 
and column HCHO/NO2 observed 
s reported by Zhang et al. (2009b), 

P P  and column HC
predicted by CMAQ 
by GOME satellite. A
several photochemical indicators have been proposed in 
the past in order to determine the NOX- or VOC-limited 
O3 chemistry in the regional modeling studies [71,72]. 
The ratio between the production rates of H2O2 and 
HNO3 ( H O HNO2 2 3

P P ) has been widely used in chemical 
indicator analysis due to its robust theoretical back- 
ground [71]. H O HNO2 2 3

P less than 0.2 typically indi-
cates a VOC-limited O3 chemistry and a larger value in- 
dicates a NOX-limited O3 chemistry [9]. As shown in 
Figure 14(a), during winter, most regions over US ex-
cept for some areas over the western US have VOC-   

P  
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Figure 13. The monthly-mean contributions of individual processes to the concentrations of selected hazardous air pollutants: 
(a) Hg(II); (b) PHg; (c) HCHO; and (d) Particulate lead over different sub-regions of CONUS domain in January (left panel) 
and July (right panel) 2002. HORZ, VERT, DDEP, CLDS, CHEM, AERO, EMIS denote the processes of horizontal trans-
port, vertical transport, dry deposition, cloud process, chemi , aerosol chemistry, and emissions, respectively. stry
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Figure 14. The monthly-mean spatial distributions of photochemical indicators of (a) surface layer 
2 2 3H O HNOP P and (b) col- 

umn HCHO/NO2 predicted by CMAQ and (c) column HCHO/NO2 observed by GOME satellite in January (left panel) and 
July (right panel) 2002. Blank in GOME observations represents no data available. 
 
limited O3 chemistry due to high NOX and low BVOC (mostly rural and remote areas) change to NOX-limited 

esults showemissions. By contrast, while the major cities and indus-
try areas remain VOC-limited chemistry, all other areas 

O3 chemistry in summer. The r n here are 
overall consistent with those reported by Zhang et al. [9] 

Copyright © 2012 SciRes.                                                                                  ACS 



K. WANG, Y. ZHANG 285

and Liu et al. [70]. In order to verify the robustness of 

2 2 3H O HN  

culate the column ratio of HCHO/NO2, another indicator 
recommended by Martin et al. [72]. The rationale to use 
two column species to indicate the surface photochemis-
try is due to that the bulk of their columns are within the 
lower mixed layer over polluted regions and the columns 
are closely related to VOC and NOX emissions [72,73]. 
Another reason is that there are space-based observations 

ospheric HCHO and NO2 column mass and 
the modeled ratio of HCHO/NO2 can be further exam-
ined by largescale and long term satellite observations. 
The transition value for column HCHO/NO2 originally 
used by Martin et al. [72] was 1, but Duncan et al. [73] 
suggested values of 1.2 - 2.2, above which O3 chemistry 
is VOC-limited. As shown in Figures 14(a)-(b), the spa-
tial pattern of VOC- vs. NOX-limited areas indicated by 
column HCHO/NO2 predicted by CMAQ is very similar 
to that of 

O as a photochemical indicator, we also cal-

of both trop

P P

2 2 3H O HNOP P in both months, if a transition 
value of 1.6 is used for column HCHO/NO2. Comparing 
with satellite observations (Figure 14(c)), CMAQ dem-
onstrates a promising accuracy in reproducing the spatial 
variation of column HCHO/NO2 in most areas, despite 
some discrepancies in some areas (e.g., in Texas and 
northern Mexico in January and in the Ohio valley in 
July), which can be attributed to the uncertainties in both 
model predicttions and satellite measurements. The above 
findings indicate that both 

2 2 3H O HNOP P  and column 
HCHO/NO2 are robust indicators for development and 
assessment of various precursor emission reduction 
strategies for O3 control. 

5. Summary and Conclusions 

This study presents a comprehensive evaluation and 
analysis of several full year sim er contiguous 
US domains using the US EPA’s the multiple-pollut-ant 
version of CMAQ v4.6 (i.e., the 2002 MP modeling 
platform). Model evaluation is performed by comparing 
simulated concentrations

ulations ov

 of O3, PM2.5, and its compo- 
ajor air toxics as 

 

omponents, with a slight improvement 
compared with previous study which is likely attributed 

nents, precursors O3 and PM2.5, and m
well as the Hg deposition with the measurements col- 
lected from ground-based monitoring networks and satel- 
lites. Our results show that CMAQ simulates well the 
spatial and seasonal variation of O3, especially during the 
O3 season and gives the best agreement with observed O3 
mixing ratio range of 40 - 60 ppb. These results demon- 
strate a moderate to great improvement in O3 predictions 
compared to the previous studies for several reasons in- 
cluding the newest CB05 gas-phase chemistry mecha- 
nism with chloride related reactions, a new PBL scheme 
ACM2, and new emission inventories. Model perform- 
ance for PM2.5 and its components is satisfactory or mar- 
ginally-satisfactory. CMAQ predicts 2

4SO   the best 

to updates in both convective cloud module and aerosol 
dry deposition module in CMAQ. The uncertainty asso- 
ciated with NH3 emissions is found to be indicative of 
the main reason for the model bias of 4NH . The per- 
formance for 3NO

among all PM2.5 c

  remains poor, despite some im- 
provements in terms of statistics as compared to earlier 
studies. OC underpredictions are much worse than those 
of EC, particularly in summer, because of underpredic- 
tions of photochemically-produced SOA, in addition to 
uncertainties in the emissions of POA and SOA precur- 
sors in summer. CMAQ shows a satisfactory perform- 
ance in predicting PM2.5 that is comparable to or even 
better than previous studies due to several model updates, 
although it overpredicts PM2.5 in winter nly due to 
overpredictions ncentrations of other unknown PM2.5, 
and underpredicts it in summer mainly due to underpre- 
dictions in OC concentrations.  

The overall model performance for HAPs is worse 
than CAPs due to several reasons. For example, the 
emission inventory for HAPs is not as accurate as that of 
CAPs, the model treatments for HAPs species are not as 
mature as those for CAPS, and there is a lack of routine 
measurements of HAPs. However, CMAQ does reasona- 
bly well in simulating seasonal Hg wet deposition, with 
consistent or even better performance as compared with 
previous studies because of several model updates. The 
model performance is slightly b

 mai
in co

etter in spring and fall 
th

easons ex- 
ce

an in summer and winter. The evaluation results for 
selected air toxics show a systematic underprediction for 
most species except for ALD2 throughout the year due to 
several reasons, including the incapability of the coarse 
grid resolution in resolving the high-level plume event, 
the underestimation of emissions for most of HAPs, and 
the simplified assumption of HAPs chemistry in current 
CMAQ-MP. The overall model performance in the 2002 
MP modeling platform is fairly good for HCHO and 
ALD2, moderately good for benzene and particulate lead, 
and very poor for 1,3-butadiene and acrolein. 

The spatial distribution and seasonal variations of 
GOME NO2 columns are generally well reproduced by 
CMAQ, with a good correlation throughout the year. De- 
spite moderate underpredictions, CMAQ reasonably cap- 
tures high MOPITT CO columns over source regions. 
Although relatively small NMBs for simulated TORs, 
CMAQ fails to capture the observed seasonal variations, 
likely due to uncertainties in the upper BCONs for O3 
used in CMAQ. Moderate-to-significant overpredictions 
of HCHO columns from CMAQ occur in all s

pt for winter. CMAQ underpredicts MODIS AODs and 
fails to capture spatial distributions for all seasons. Sev- 
eral possible reasons for model biases in column predic- 
tions are identified. These include inaccurate seasonal al- 
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location, underestimation of emissions, inaccurate BCONs 
in higher altitudes, lack of model treatments such as mi- 
neral dust or plume-in-grid process, as well as limitations 
and errors in satellite data retrievals. 

The IPRs of the process analysis show that emissions 
are important sources for NOX, PM2.5, and many of HAPs 
such as Hg(II), PHg, and particulate lead over almost all 
the sub-regions in both seasons. Gas-phase chemistry is 
the dominant contributor to both HCHO and O3 espe- 
cially in summer, however, it removes NOX significantly 
in both seasons. Aerosol processes contribute signifi- 
cantly to PHg formation and also play important but 
complex roles in the formation/removals of 3NO  and 
PM . Cloud processes remove most2.5  of HAPs signifi- 

ntly over all the sub-regions. The role of dry deposition 
is relatively more important for O3, HCHO, and Hg(II) 
especially in summer. Horizontal and vertical transport 
play important role for most of species, indicating the 
importance of accurate prediction of wind fields on air 
pollutants. The IPR results suggest that improving model 
treatments of those dominant processes may help to im- 
prove the model performance. The IRRs show a domi- 
nant NOX-limited chemistry in most areas but VOC-lim- 
ited chemistry over urban and industry areas in summer 
and VOC-limited chemistry in winter over most of US, 
consistent with previous modeling studies and GOME 
satellite observations. The results indicate that integrated 
NOX/VOC emission controls should be considered over 
different regions in different seasons. 

As illustrated in this study, the predictions of CAPs 
and HAPs from the 2002 MP 36-km and 12-km simula- 
tions are within the range or better than those reported in 
several recent EPA applications. This attests its scientific 
capability in assessing O3 and PM2.5 as well as air toxics 
for the purposes of the NAAQS Final Rule. The model 
evaluation also identifies several key areas for potential 
model improvements, thus providing guidance for sensi- 
tivity studies and further model development and im- 
provement efforts and directions in the fu

ca

ture. 
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