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Abstract 
A methology is described for the synthesis of novel temperature-responsive 
interpenetrating polymer network (IPN) hydrogels with poly(2-acrylamido- 
2-methylpropane sulfonic acid) (PAMPS) as a tightly crosslinked 1st network, 
temperature-responsive poly(acrylamide-co-N-(1,1-dimethyl-3-oxobutyl)- 
acrylamide) (P(AM-co-DAAM)) with low cost as a lossely crosslinked 2nd 
network. The structure and morphology of the IPN hydrogels were characte-
rized by FTIR, TGA and SEM, and the results indicated that PAMPS network 
introduced P(AM-co-DAAM) hydrogels have large, thermally stable and in-
terconnected porous network. The properties of the IPN hydrogels, which in-
clude: swelling capacity, equilibrium swelling/deswelling ratio, temperature- 
responsive behavior, and the dwelling kinetics as specific temperature, were 
investigated carefully. Results showed that the obtained IPN hydrogels dis-
played a controllable equilibrium swelling/deswelling behavior and possessed 
remarkable thermosensitivity. In addition, the results also indicate that the 
incorporation of the hydrophobic groups DAAM has a big effect on the LCST 
of the IPN hydrogels. Consequently, these novel temperature-responsive IPN 
hydrogels with low cost and slow-releasing performance would be promising 
for potential applications, such as environmental catalysis, water treatment, 
and agriculture. 
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1. Introduction 

Hydrogels are three-dimensional, hydrophilic, polymeric networks having a sol-
id-like appearance that does not dissolve in water but can absorb large amounts 
of water and aqueous ingredients [1] [2] [3]. Over the past few decades, hydro-
gels have become one of the most extensively studied soft materials and current-
ly continue to fascinate researchers throughout the world. In recent years, sti-
muli-responsive hydrogels as intelligent materials are increasingly attracting the 
academic and industrial interests: these hydrogels can undergo abrupt volume or 
phase transition in response to environmental stimuli such as temperature [4], 
pH [5], light [6], electric field [7], magnetic field [8], and oxidation-reduction 
[9], etc. Because of this unique feature, stimuli-responsive hydrogels have re-
ceived extensive attention in the fields of controlled drug delivery [10], separa-
tion [11], tissue engineering [12], soft robtics [13], artificial muscles [14], cataly-
sis [15], and solving environmental problems [16], etc. Among these stimu-
li-responsive hydrogels, temperature-responsive hydrogels are the most widely 
investigated. 

Temperature-responsive hydrogels demonstrate a good hydrophilicity in 
aqueous solutions at low temperature, and separate from the solution when the 
temperature is raised above the lower critical solution temperature (LCST). 
Poly(N-isopropyl acrylamide) (PNIPAAm) hydrogel is typical tempera-
ture-responsive polymeric network, which exhibits phase separation at its rela-
tive low LCST of 32˚C - 34˚C in aqueous solution [17]. At a temperature lower 
than the LCST, the PNIAAm hydrogel can absorb water and exist in swollen 
state because of the bonding interaction between the hydrophilic amide group 
and water molecules. Whereas, at a temperature higher than the LCST, the hydro-
gel undergoes an abrupt and dramatic shrinkage in volume due to the disruption 
of hydrogen bonds and hydrophobic interactions among the isopropyl groups of 
neighboring polymer chains. 

From the viewpoint of applications, although the temperature-responsive hy-
drogels based on N-isopropylacrylamide (NIPAM) have been investigated for 
many biomedical and pharmaceutical applications [18] [19] [20], the challenge 
impeding their potential applications such as environmental catalysis [21] [22] 
[23], water treatment [24] [25], and agriculture [26] is encountered. The main 
limitation of the conventional PNIPAAm hydrogel is fairly expensive, which 
may impede large-scale manufacturing of the temperature-responsive hydrogels 
and acceptance of water treatment and agriculture, and its phase transition is li-
mited in a narrow range. Also, PNIPAAm hydrogels are limited by their poor 
mechanical properties, with the modulus and strength values [27] [28]. 

Based on consideration of the above limitations, studies have shown that 
temperature-responsive polymers on acrylamide (AM)/N-(1,1-dimethyl-3- 
oxobutyl)-acrylamide) (DAAM), as a component of hydrogel, can effectively 
reduce the cost of temperature-responsive hydrogels [29] [30] and hydrogels 
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consisting of two independently crosslinked polymers networks can achieve im-
proved mechanical properties [31] [32]. 

In this report, novel temperature-responsive interpenetrating polymer net-
work(IPN) hydrogels were prepared with a tightly crosslinked, highly negatively 
charged poly(2-acrylamide-2-methyl-propane sulfonic acid) (PAMPS) 1st net-
work, and loosely crossliked, neutral temperature-responsive P(AM-co-DAAM) 
with low cost, which the LCST value of that can be controlled by varying the 
AM/DAAM mass ratio according to the application field, 2nd network. The 
structural characterizations and the thermal properties of these tempera-
ture-responsive IPN hydrogels were done by Fourier Transform Infrared Spec-
troscopy (FTIR), field emission scanning electron microscopy (SEM), thermo-
gravimetric (TGA), and differential scanning calorimetric (DSC) analyses. These 
temperature-responsive IPN hydrogels with lowcost can have practical applica-
tions to environmental catalysis and water treatment. 

2. Materials and Methods 

2.1. Reagents and Materials 

2-acrylamido-2-methylpropane sulfonic acid (AMPS, 97%) was obtained from 
Sigma-Aldrich. Acrylamide (AM, 99.5%, ChangjiuAgri-Scientific Co. Ltd, Nan-
chang, China) and N-(1,1-dimethyl-3-oxobutyl)-acrylamide (DAAM, >98%, 
Liangxi Fine Chemicals Co. Ltd., Wuxi, China) were recrystallized twice from 
methanol and dried under vacuum prior to use. N,N-methylenebis(acrylamide) 
(MBA) (Sinopharm Chemical Reagent Co., Ltd., China) used as across-linking 
agent was recrystallized from ethanol. 2-oxoglutaric acid (Sinopharm Chemical 
Reagent Co., Ltd., China) was used as an initiator. The water used was doubly 
distilled in an all-glass apparatus, and the nitrogen gas was 99.999% in purity. 

2.2. Preparation of Temperature-Responsive IPN Hydrogels 

The temperature-responsive IPN hydrogel was prepared via a two-step strategy, 
as shown in Scheme 1. In the first step, the required masses of AMPS monomer, 
photoinitiator, crosslinker were dissolved in deionized water. Nitrogen was bub-
bled through the monomer/solvent mixture for 30 min toremove oxygen dis-
solved in the reaction mixture. The solution was cast on glass plates equipped 
with spacers, then photo-polymerized by UV lamp with full wavelength at 20˚C 
for 2 h. The hydrogel was then removed from the plates and immersed in deio-
nized water to remove the unreacted monomers. The hydrogel was taken out 
and placed in fresh deionized water three times a day for 7 days before it was 
dried first in air and then dried in a vacuum oven. In the second step, the dried 
PAMPS hydrogel, of known weight, was immersed in 40 mL of aqueous con-
taining desired amounts of AM, DAAM, 2-oxoglutaric acid (as photointiator) 
and MBA (crosslinker) for at least 3 days until the equilibrium was reached. The 
soft-swollen hydrogels were gently handled and kept between two glass plaques 
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Scheme 1. The synthetic procedure of temperature-responsive IPN hydrogel. 

 
separated by a rubber gasket spacer. By irradiation with the UV lamp for 8 h (the 
distance between the lamp and the sample chamber was about 15 cm), the 
second network was subsequently synthesized in the presence of the first net-
work. During the polymerization reaction, the temperature inside the chamber 
rose up to 40˚C - 50˚C and after 1 - 2 h the hydrogel became opalescent indicat-
ing the formation of temperature-responsive poly(acrylamide-co-N-(1,1-dimethyl- 
3-oxobutyl)-acrylamide) (P(AM-co-DAAM)) network. The as-formed IPN hy-
drogels, hereafter labeled as IPN1, IPN2, IPN3, IPN4 and IPN5 were dipped in 
distilled water for 7 days at room conditions for removing unreacted moieties. 
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The water was renewed every 12 h. After, the hydrogels were dried at room 
temperature. The feed compositions of the hydrogels’ synthesis reaction are 
shown in Table 1. 

2.3. Temperature-Responsive IPN Hydrogels Characterization 
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR) 
The FTIR spectra of the dried hydrogel samples were recorded by making 
KBrpellets on a Nicolet MX-1E FTIR spectrophotometer (USA). The FTIR spec-
tra were recorded in the range of 400 - 4000 cm−1. 

2.3.2. Thermo-Gravimetric Analysis (TGA) 
TGA was carried out with a NETZSCH STA 409 C/CD instrument under an 
oxygen free nitrogen atmosphere. Dry samples of 5 - 8 mg weight were used. A 
linear temperature heating rate of 10˚C·min−1 was maintained from 30˚C to 
900˚C. TGA weight loss curves were recorded. 

2.3.3. Scanning Electron Microscopy (SEM) 
SEM was performed on hydrogels after freeze-dried to maintain the porous 
structure without any collapse. The samples were plunged in liquid nitrogen, 
and the vitrified samples were cut with a cold knife. They were mounted on the 
base plate and coated with gold. The morphology was imaged on a Hitachi S-570 
SEM (Tokyo, Japan) using an accelerating voltage of 20 kV. 

2.3.4. Measurement of Swelling Kinetics 
The swelling kinetics of the hydrogels was measured at 20˚C. After wiping off 
water or 0.9 wt% NaCl solution on the surface with filter paper, the SR of the 
hydrogel was recorded during the course of swelling at regular time intervals. 
The SR was calculated by Equation (1) 

t d

d

W W
SR

W
−

=                       (1) 

where Wt is the weight of wet hydrogel at regular time intervals and Wd is the 
weight of the dried hydrogel. 

2.3.5. Measurement of Deswelling Kinetics 
The kinetics of deswelling behavior of the hydrogels was measured at 50˚C. Be-
fore the measurement of deswelling kinetics, the hydrogels were reached swollen 
equilibrium in deionized water or 0.9 wt% NaCl solution at 20˚C. The weights of 
the hydrogels were recorded during the course of deswelling at regular time in-
tervals after wiping off water or 0.9 wt% NaCl solution on the surface with filter 
paper. The deswelling ratio (WR) (%) is defined as follows: 

( )% t d

S

W W
WR

W
−

=                            (2) 

where Wt is the mass of hydrogels at time t, Wd is the mass of the dried hydro-
gels, and Ws is themass of water in the swollenhydrogels at 20˚C. 
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Table 1. The feed compositions of the hydrogels’ synthesis reaction. 

Sample 
First network Second Network 

AMPS (wt%) (DAAM:AM) Molar ratio (DAAM + AM) (wt%)* 

IPN1 25% 2:1 30 

IPN2 25% 3:2 30 

IPN3 25% 1:1 30 

IPN4 25% 1:1 20 

IPN5 25% 1:1 40 

*The solution concentration of AM and DAAM used during polymerization of P(AM-co-DAAM)/PAMPS 
in Step 2. 

2.3.6. Equilibrium SR at Different Temperatures 
The equilibrium SR of the hydrogel was measured after wiping off water or 0.9% 
NaCl solution on the surface with filter paper in the temperature range from 
20˚C to 60˚C, hydrogel samples were immersed into excess deionized water or 
0.9% NaCl solution for 24 h at every temperature. The SReq at different temper-
atures were calculated as Equation (1). 

2.3.7. Differential Scanning Calorimetry (DSC) 
The DSC studies were performed on a Perkin-Elmer DSC7. The samples were 
heated from 8˚C to 60˚C, with a heating rate of 2˚C·min−1 in an inert condition. 

2.3.8. Oscillating Swelling/De-Swelling Kinetics of IPN Hydrogels 
Pre-weighted dried hydrogel samples were first immersed in deionized water at 
20˚C to reach equilibrium, whereafter the oscillatory swelling behavior was ob-
served in deionized water at alternate temperatures of 20˚C and 60˚C. After 30 min 
of de-swelling at 60˚C, the hydrogels were reimmersed in deionized water of 
20˚C for another 30 min swelling. The measurement of the SR for the hydrogel 
was performed by repeating about steps for 330 min. 

3. Results and Discussion 
3.1. FTIR Spectra of the Temperature-Responsive IPN Hydrogel 

The FTIR analysis of the different hydrogel samples (Figure 1) showed the 
presence of peaks corresponding to the functional groups of the monomeric 
units used in preparing the PAMPS hydrogel and IPN hydrogel. The characteris-
tic absorption peaks of AMPS, AM and DAAM units appear at their usual wave 
numbers. The peaks at 1220 and 1039 cm−1 correspond to the asymmetric and 
symmetric S-O stretching of the -SO3H in the AMPS units, respectively. The 
peak at 1650 cm−1 is due to O = C-N of AMPS, AM and DAAM, and the band 
around 1705 cm− 1 is assigned to the characteristic stretching vibration of 
O=C-CH3 from ketone in DAAM. These results demonstrate that both the 
PAMPS network and the P(AM-co-DAAM) network are present in the temper-
ature-responsive IPN hydrogel. 
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Figure 1. The FTIR spectra of PAMPS hydrogel (a), and IPN1 hydrogel (b). 

3.2. Thermogravimetric Analysis of IPN1 Hydrogel 

The thermal decomposition and weight loss profiles of PAMPS and IPN1 hy-
drogels were estimated from TGA thermogram as a function of temperature, as 
shown in Figure 2. PAMPS hydrogel presents three main thermal degradation 
events in the temperature range of 30˚C - 200˚C, 200˚C - 400˚C, and 400˚C - 
800˚C. The first event is assigned to the evaporation of residual water, where the 
weight loss of 10.0% took place. In the second stage almost 57.5% mass loss oc-
curred. The third stage started from 400˚C, and 11.0% decomposition was ob-
served at 800˚C. The latter two events were attributed to a sophisticated process 
by which breakage of crosslinking bridges, scission of the long chain backbone, 
and decomposition of imides and amide were dominant [33] [34]. Compared to 
PAMPS hydrogel, IPN1 hydrogel presented a higher residual mass and the onset 
degradation temperature emerged at higher temperature (220˚C), which sug-
gested the formation thermally stable network that could be attributed to the 
formation of inter and intra molecular hydrogen bonds among the PAMPS and 
the P(AM-co-DAAM) chains. 

3.3. SEM Micrographs of IPN1 Hydrogel 

The interior morphology of IPN1 hydrogel is shown in Figure 3. The SEM im-
ages indicate that the interpenetrating polymer network hydrogel has been syn-
thesized. By SEM observation, the IPN1 hydrogel appeared to have more com-
pact porous structures with an average pore size of about 25 μm, due to the 
presence of the P(AM-co-DAAM) network, which increased the relative cros-
slink density of hydrogel structure. Moreover, due to the presence of the 
P(AM-co-DAAM) network, the IPN1 hydrogel shows a more porous network 
structure in character, which could increase the deswelling rate of the hydrogel 
when the temperature is about the hydrogel’s LCST. 

3.4. Swelling Kinetics of the IPN Hydrogels 

In order to determine the effects of the contents of DAAM and AM on the network  
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Figure 2. TGA thermograms of PAMPS and IPN1 hydrogels. 

 

 
Figure 3. SEM images of the IPN1 hydroge. 
 
density of the IPN hydrogels which were prepared by the varying the 
DAAM/AM molar ratio and the concentration of DAAM and AM, the swelling 
studies of the IPN hydrogels were carried out at 20˚C in deionized water and 0.9 
wt% NaCl solution. As shown in Figure 4, the swelling properties of the IPN 
hydrogels with different compositions differed greatly in deionized water and 0.9 
wt% NaCl solution. It can be observed: 1) the SR of the IPN hydrogels increased 
steeply within 480 min, and then reached a plateau. 2) the SR in 0.9 wt% NaCl 
solution is lower than indeionized water, for example, the SR of IPN3 (molar 
rate DAAM/AM = 1/1) in deionized water is about 13.6 g/g within 480 min, 
while the SR of it in 0.9 wt% NaCl solution is about 3.5 g/g within 480 min. 3) 
the SR of the hydrogels decreased with an increase of DAAM content in the IPN 
hydrogels. For instance, the SR of the IPN hydrogels in deionized water de-
creased from 13.6 g/g to 9.5 g/g as DAAM/AMmolar ratioincreased from 1/1 to 
2/1 within 480 min. The phenomenon can be attributed to the enhancement in 
hydrophobicity of the IPN hydrogel, which renders it more and more difficult 
for water molecules to penetrate into the hydrogel, hence decrease the swelling 
ratio. Ionic strength can play important role in the swelling behaviour. Hydrogels  
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(a)                                     (b) 

 
(c)                                    (d) 

Figure 4. Swelling kinetics of IPN hydrogels in deionized water (a), (b) and in 0.9 wt% 
NaCl solution (c), (d) at 20˚C. 
 
do not swell appreciably in the presence of electrolytes due to the increase of 
movable counterions of asolution, which lead to a decrease in the osmotic pres-
sure within the hydrogel, causing the hydrogel to shrink [35]. 

3.5. Deswelling Kinetics of the IPN Hydrogels 

The investigation of deswelling kinetics is important for the temperature-responsive 
IPN hydrogels in measuring their water retention and deswelling rate. Figure 5 
shows the deswelling kinetics of the temperature-responsive IPN hydrogels from 
the equilibrium swelling state at 20˚C water bath to 50˚C water bath. As ex-
pected, all the swollen IPN hydrogels tended to shrink and lose water after im-
mersing in deionized water or 0.9 wt% NaCl solution at higher temperature due 
the disruption of hydrophilic/hydrophobic balance in IPN hydrogels. The water 
retention decreased rapidly with the increase of deswelling time before reaching 
a constant value within 600 min. The data illustrate that the deswelling rate ofthe 
IPN hydrogel samples is obviously dependent on the DAAM content. For exam-
ple, the WR of the IPN hydrogels decreased from 76.2% (IPN1) to 44.7% (IPN3) 
as DAAM/AM molar ratioincreased from 1/1 to 2/1 in deionized water, while the 
WR of the hydrogels increased from 49.9% (IPN1) to 64.2% (IPN3) in 0.9 wt% 
NaCl solution within 600 min. 
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 5. Deswelling kinetics of IPN hydrogels in deionized water (a), (b) and in 0.9 wt% 
NaCl solution (c), (d) at 50˚C. 

3.6. Temperature Dependence of the IPN Hydrogels 

The equilibrium swelling ratio (ESR) is one of the most important parameters 
for evaluating temperature-responsive hydrogels because it illustrates their LCST 
behavior. The effect of temperature on the ESR of the temperature-responsive 
IPN hydrogels in deionized water and 0.9 wt% NaCl solution at various temper-
ature from 20˚C to 60˚C are shown in Figure 6. The results show that the ESR of 
the IPN hydrogels decrease as the temperature increases and have a broadening 
hydrogel transition in the range of the temperature from 25˚C to 60˚C. In addi-
tion, the change of the temperature-responsive IPN hydrogels from equilibrium 
swelling state to another is not instantaneous that the process is not in accor-
dance with PNIPAM based hydrogels [36], indicating that the tempera-
ture-responsive IPN hydrogels Based on a copolymer of acrylamide and 
N-(1,1-dimethyl-3-oxobutyl)-acrylamide were suitable for slow-releasing appli-
cations. The temperature-response of IPN hydrogels is attributed to the alteration 
of hydrophilicity of the network because the thermosensive P(AM-co-DAAM) is 
incorporated into the first hydrogel network. At temperature increase, a part of 
hydrogen bonds will destroyed, and the hydrophobic interactions among the 
hydrophobic groups in the second P(AM-co-DAAM) network become dominant  
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Figure 6. ESR of IPN hydrogels in deionized water (a), (b) and in 0.9% NaCl solution (c), 
(d) over the temperature range from 20˚C to 60˚C. 
 
and consequently the IPN hydrogels become much less hydrophilic. With the 
increasing DAAM/AM molar ratio or the contents of DAAM and AM in the 
INP hydrogels, the hydrogels became more hydrophobic and the swelling ratio 
of the hydrogels decreased more sharply. 

3.7. Thermal Behavior of the IPN Hydrogels 

The thermal behavior of the IPN hydrogels was investigated using DSC with the 
LCST reported as the peak temperature [37] [38]. At the LCST, the water in hy-
drogels will be separated from the network, leading to a smaller heat capacity. As 
shown in Figure 7, the phase transition of the IPN hydrogels is gradually 
strengthened as DAAM/AM molar ratio or the concentration of DAAM and AM 
increases. For instances, the LCST of IPN hydrogels decreased from 39˚C (IPN3) 
to 18˚C (IPN1), as DAAM/AM molar ratio increased from 1/1 to 2/1. Note that 
the LCST of IPN4 hydrogel is blurry because of the extremely weak phase transi-
tion caused by decreasing the contents of thermosensive P(AM-co-DAAM). The 
results indicate that the incorporation of the hydrophobic groups DAAM has a 
big effect on the LCST of the IPN hydrogels, as discussed earlier. 
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Figure 7. DSC curves of IPN hydrogels. 

3.8. Oscillatory Swelling/Deswelling Kinetics of the IPN Hydrogels 

From the point of applications, the oscillating swelling-deswelling properties 
over a shorter time intervals with the small temperature cycles of the hydrogels 
are important, which would be stable for potential applicants. So it is necessary 
to investigate the oscillating swelling-deswelling kinetics in response to the tem-
perature changes. Figure 8 shows the effect of oscillatory cycling on the ther-
mosensitivity of the synthesized IPN hydrogels at 20˚C and 60˚C. It can be 
found that the SR of the hydrogels decreased slightly with increasing number of 
cycles due to their relative slow swelling rate comparing with their shrinking 
rate. The slower and smaller magnitude of oscollating responses from the novel 
temperature-responsive IPN hydrogels may be advantageous for practical appli-
cations in many fields such as environmental catalysis, water treatment, and 
agriculture. 

3.9. Effect of Temperature on the Appearance of IPN Hydrogel  

The effect of temperance on the appearance of IPN hydrogel is shown in Figure 
9. The results show that the change of appearance of IPN hydrogel was observed 
as the water temperature was switched from 20˚C to 60˚C. When the water tem-
perature is higher than 23˚C, the appearance of IPNhydrogel was changed from 
transparent to opaque because a collapsed phase transition of P(AM-co-DAAM) 
component was occurred under water above LCST of P(AM-co-DAAM) [29]. 
The IPN hydrogel would be shrunk as the temperature increased. This result 
conforms to the above-mentioned results for the temperature effect on ESR of 
the IPN hydrogels. 

4. Conclusion 

A series of novel temperature-responsive IPN hydrogels based on a copolymer of 
acrylamide and N-(1,1-dimethyl-3-oxobutyl)-acrylamide were successfully syn-
thesized by a two-step method. Some conclusions can be drawn as follows. The 
temperature-response of the synthesized IPN hydrogels can be successfully en-
dowed by immersing of P(AM-co-DAAM) solution into the first PAMPS net-
work and the thermosensitivities of the IPN hydrogels are more obvious as the  
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Figure 8. Oscillatory swelling/de-swelling kinetics of IPN hydrogels over 30 min temper-
ature cycles in deionized wate rbetween 20˚C and 60˚C. 
 

 
Figure 9. Photographs of swollen the IPN hydrogel in water at 20˚C and 60˚C, respec-
tively. 
 
DAAM/AM molar ratio or the content of P(AM-co-DAAM) moiety in the IPN 
hydrogels increased. The ESR of the IPN hydrogels decreases with increasing the 
DAAM/AM mass ratio or the content of P(AM-co-DAAM) moiety in the IPN 
hydrogels and the ESR in 0.9 wt% NaCl solution is lower than in deionized wa-
ter. The physical properties of temperature-responsive IPN hydrogels, such as 
equilibrium swelling/deswellingratio, water retention, reversible response, and 
temperature dependence behaviors, could be effectively controlled by the inter-
nal chemical composition and external temperature. These novel tempera-
ture-responsive IPN hydrogels with low lost, thermally stable network, tunable 
swelling/deswelling characteristics, and distinct thermosensitivity are promising 
candidates for applications in environmental catalysis, water treatment and 
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agriculture. 
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