

Synthesis of Crystallized BaWO₄ Nanorods in a Microemulsion System

Jie Zhang^{1,2}, Xiaoshu Zhu^{1,2}, Heyong Huang^{1,2}, Yinping Zhang^{1,2*}

¹Nanjing Normal University Center for Analysis and Testing, Nanjing, China ²Biomedical Materials Testing Service Center in Jiangsu Province, Nanjing, China Email: *zhangyinpingnjnu@163.com

How to cite this paper: Zhang, J., Zhu, X.S., Huang, H.Y. and Zhang, Y.P. (2017) Synthesis of Crystallized BaWO₄ Nanorods in a Microemulsion System. *Advances in Chemical Engineering and Science*, **7**, 228-234.

https://doi.org/10.4236/aces.2017.72017

Received: February 24, 2017 **Accepted:** April 25, 2017 **Published:** April 30, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

BaWO₄ nanorods have been successfully synthesized in w/o microemulsion system containing barium ions via a simple reaction between Ba²⁺ and WO₄²⁻. The BaWO₄ Nanorods were characterized by XRD, TEM, and SEM, respectively. Results showed that the solvents composition—volume ratio of 4-dioxane and distilled water—played the key role in the formation of BaWO₄ Nanorods. Furthermore, the strong vibration at 925 cm⁻¹ on its Raman spectrum indicated that the BaWO₄ nanorods is good at stimulating Raman scattering in transient and steady-state, making it as a promising candidate material for laser with self-raman conversion of radiation inside the active medium.

Keywords

BaWO₄ Nanorods, Microemulsion, 4-Dioxane, Raman Spectrum

1. Introduction

Nowadays, tungstate materials, $BaSO_4$, have attracted much attention in view of its luminescent behavior and structural properties [1] [2]. As compared to other materials, the narrow line width of its stimulated Raman scattering (SRS)-active mode in $BaSO_4$ crystal (1.6 cm⁻¹) leads to high peak intensity (63%). In particular, Raman gain has been measured to be 8.5 cm/GW at 1.06 µm wavelength [2]. Furthermore, the material is not hydroscopic and transparent in visible and near-infrared spectral range. It is a promising material for crystalline nano- and picoseconds Raman lasers. A number of methods, including hydrothermal method, flux method and solid-state reaction [3]-[8], have been developed to generate tungstate materials. However, tough reaction conditions, such as high-reaction temperature, long-reaction time or complex equipment, were applied in most this approaches [9]. Thus, seeking efficient but low-cost techniques for

synthesizing BaSO₄ is required for the development of electro-optical materials.

It is well known that different surfactants can form micelles with variable morphologies. This can be utilized for the modification of crystal growth [10] [11] [12]. For example, Zhang *et al.* [12] reported that the penniform super structures of BaWO₄ nanowires have been successfully synthesized in reverse micelles by using a block copolymer as the directing agent. The effects of the mixing ratio between the anionic and cationic surfactants on the crystal growth of BaWO₄ nanowires have been further studied. As proposed, the different morphologies and sizes of BaWO₄ crystals could be synthesized by the employment of super-molecule templates composed of biomembrane and organic reagents at room temperature [13]. However, the BaWO₄ nanoparticles with high crystalline and various regular shapes are required in order to enhance physiccal properties. It has thus been indicated that the BaWO₄ microparticles with well crystallinity should be obtained through simple method. Whereas, the composition of the microemulsion influences the structures of the surfactant aggregation as well as the size and shape of the final nanocrystals [14] [15].

Therefore, the present study was conceived to develop $BaWO_4$ nanoparticles in a water-in-oil (W/O) microemulsion system composed of 1,4-dioxane and water. The phases, morphologies, and luminescent properties have been investigated.

2. Experimental Section

BaCl₂·2H₂O and Na₂WO₄·2H₂O with analytical grade purity were used as, and all other chemical reagents were analytical grade. BaWO₄ nanoparticles were obtained from BaCl₂ and Na₂WO₄ microemulsion system according to the following reaction:

$$BaCl_2 + Na_2WO_4 = BaWO_4 \downarrow +2NaCl$$

Firstly, 4-dioxane and distilled water were mixed together to prepare a microemulsion system with different volume ratios. Secondly, $BaCl_2 \cdot 2H_2O$ (0.061 g) and $Na_2WO_4 \cdot 2H_2O$ (0.0821 g) were dissolved in an aliquot of 10 mL of microemulsion system, respectively. The mixture containing Na_2WO_4 were then added dropwise into the flask containing $BaCl_2$ at 35°C and 150 rpm. After mixing for 10 min, the sample was centrifuged at 4024 ×g for 5 min and the white precipitates were collected. Finally, the white precipitates were rinsed three times with distilled water and dried at 80°C for 6 h.

The X-ray diffraction (XRD) patterns were recorded using a Janpan Ridaku D/Max-*y*A X-ray diffractometer. The particles size and morphology were characterized by scanning electron microscopy (SEM, JEM-200CX) and transmission electron microscopy (TEM, JEOL-2010). Raman spectra were measured at the 514.5 nm line of an Ar laser (Labram HR800).

3. Results and Discussion

The obtained BaWO₄ particle in water-in-oil (W/O) microemulsion system was

characterized by XRD, and the typical XRD pattern was shown in **Figure 1**, in which all the peaks could be indexed to the pure $BaWO_4$ particle with a tetragonal unit cell (a = b = 0.5626 nm, c = 1.2744 nm). This can be indexed to the JCPDS Card No. 82,457 [12]. No other peaks were detected in the pattern, indicating the high purity of the $BaWO_4$ particle.

The typical TEM images of products synthesized with different ratio of 4dioxane and distilled water were displayed in Figure 2. Figure 2(a) showed that BaWO₄ particles with large side length were developed without the addition of 4-dioxane.Whereas, as can be seen from Figure 2(b) and Figure 2(c), with an increase of the ratio of 4-dioxane and distilled water from 3:7 to 5:5, the diameter of produced rods significantly reduced from 500 nm to 30 nm. Finally, as indicated from Figure 2(d), when the ratio value reached 6:4, it totally transformed from rods to fine spherical particles. These images implied that the concentration of 4-dioxane played a crucial role in the formation of BaWO₄ nanorods. Generally, the formation of BaWO4 crystal basically consists of a nucleation step followed by particle growth stages: In the initial stage, some of nuclei were formed. However, in the particle growth stages, the development of the crystallite is controlled by 4-dioxane. 4-dioxane is also considered as a stabilizer preventing the aggregation during the formation of nanocrystals. Thus, no special morphologies would form in the single aqueous system in the absence of 4-dioxane because no formation of templates for the preparation of $BaWO_4$ nanorods. It is well known that different concentrations of surfactants can form micelles with varied morphologies [15], which could be utilized for the modification of crystal growth. Nevertheless, higher concentration of 4-dioxane on BaWO₄ crystals resulted in an isotropic growth mode and nearly equiaxial particles, which unfavored the formation of BaWO4 nanorods. Similar results have also been reported by other groups [14] [16] [17]. Additionally, the TEM and

Figure 1. XRD patterns of BaWO₄ Nanorods.

Figure 2. TEM images of the produced $BaWO_4$ with different ratio of 1,4-dioxane and water. (a) 0:100; (b) 2:8; (c) 5:5; (d) 6:4.

SEM image of $BaWO_4$ nanorods prepared in the solvents with the ration value of 4:6, was showed in **Figure 3**. The side length was approximately 600 nm, and the diameter was about 50 nm.

The Raman spectra of the produced BaWO₄ nanorods with a ration value of 4:6 was shown in **Figure 4(a)**. The peaks at 926.5, 830.7, 794.6 and 330.6 cm⁻¹ belongs to vibration mode of v_1 (A_g), v_3 (B_g), v_3 (E_g) and v_2 (A_g), respectively. Furthermore, a strong vibration at 925 cm⁻¹ was observed, indicating the BaWO₄ nanorods is good at stimulating Raman scattering in transient and steady-state [2]. This made it as a promising material for laser with self-raman conversion of radiation inside the active medium. The blue emission from BaWO₄ materials has been reported at low temperatures in the literature [18] [19] [20]. Interestingly, as shown in **Figure 4(b)**, a broad emission band extended from 396 nm to 498 nm (peaked at approximately 425 nm) was observed when the BaWO₄ nanorods excited at 270 nm. The blue emission from BaWO₄ nanorods is known to be due to radiative transitions within $(WO_4^{2^-})$ molecular complexes. Hence, a similar mechanism for tungstate materials has been reported in the literature [8] [21] [22] [23].

4. Conclusion

In the present study, $BaWO_4$ nanoparticles have been prepared in water-in-oil (W/O) microemulsion systems composed of 1,4-dioxane and water with varied volume ratios. The results of typical TEM images indicated that the concentra-

Figure 3. The TEM (a) and SEM (b) images of the produced BaWO₄ with a ratio of 1,4dioxane and water for 4:6.

Figure 4. The Raman spectra of produced BaWO₄ nanorods with a ration value of 1,4-dioxane and water for 4:6 (a), and its emission spectra at an excitation wavelength of 270 nm (b).

tion of 4-dioxane played a crucial role in the formation of BaWO₄ nanorods with different morphologies. Thus, the addition of 1,4-dioxane should be controlled. Furthermore, the Raman spectra of the produced BaWO₄ nanorods indicated that it is a promising material for laser with self-raman conversion of radiation inside the active medium.

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (13KJB150023, 15KJB210003, BK20150976), and the Natural Science Foundation of China (41501239).

Highlights

BaWO₄ nanorods have been successfully synthesized. The ratio of 4-dioxane and water played the key role. The bands of produced BaWO₄ nanorods vibrated strongly at 925 cm⁻¹.

References

[1] Zhou, G., Lü, M., Gu, F., Wang, S. and Xiu, Z. (2005) Morphology-Controlled Syn-

thesis of BaWO4 Nanocrystals via a Surfactant-Assisted Method. *Materials Letters*, **59**, 2706-2709. <u>https://doi.org/10.1016/j.matlet.2005.03.054</u>

- [2] Vodchits, A.I., Orlovich, V.A., Apanasevich, P.A., Basiev, T.T. and Zverev, P.G. (2007) Nonlinear Optical Properties of BaWO4 Crystal. *Optical Materials*, 29, 1616-1619. <u>https://doi.org/10.1016/j.optmat.2006.08.005</u>
- Byrappa, K. and Yoshimura, M. (2013) Handbook of Hydrothermal Technology. 2nd Edition, William Andrew Publishing, Oxford, 615-762. https://doi.org/10.1016/B978-0-12-375090-7.00010-4
- [4] Hong, K., Xie, M., Hu, R. and Wu, H. (2006) Synthesis of Potassium Tungstate Micro-Walls by Thermal Evaporation. *Journal of Crystal Growth*, 295, 75-78. <u>https://doi.org/10.1016/j.jcrysgro.2006.07.002</u>
- [5] Jia, G., Huang, C., Li, L., Wang, C., Song, X., Song, L., Li, Z. and Ding, S. (2012) Hydrothermal Synthesis and Luminescence Properties of Uniform BaMoO4:Ln3+ (Ln = Eu, Tb, Dy, and Sm) Microspheres. *Optical Materials*, **35**, 285-291. https://doi.org/10.1016/j.optmat.2012.08.021
- [6] Cui, C., Bi, J., Gao, D. and Zhao, K. (2008) Morphology and Crystal Phase Control in Preparation of Highly Crystallized BaWO4 Film via Galvanic Cell Method. *Journal of Alloys and Compounds*, 462, 16-19. https://doi.org/10.1016/j.jallcom.2007.08.013
- Byrappa, K. and Yoshimura, M. (2001) Handbook of Hydrothermal Technology. William Andrew Publishing, Norwich, 618-690. https://doi.org/10.1016/B978-081551445-9.50009-X
- [8] Pontes, F.M., Maurera, M.A., Souza, A.G., Longo, E., Leite, E.R., Magnani, R., Machado, M.A.C., Pizani, P.S. and Varela, J.A. (2003) Preparation, Structural and Optical Characterization of BaWO4 and PbWO4 Thin Films Prepared by a Chemical Route. *Journal of the European Ceramic Society*, 23, 3001-3007. https://doi.org/10.1016/S0955-2219(03)00099-2
- [9] Wang, X., Xu, H., Wang, H. and Yan, H. (2005) Morphology-Controlled BaWO4 Powders via a Template-Free Precipitation Technique. *Journal of Crystal Growth*, 284, 254-261. <u>https://doi.org/10.1016/j.jcrysgro.2005.06.045</u>
- [10] Luo, Z., Li, H., Xia, J., Zhu, W., Guo, J. and Zhang, B. (2007) Controlled Synthesis of Different Morphologies of BaWO4 Crystals via a Surfactant-Assisted Method. *Journal of Crystal Growth*, **300**, 523-529. <u>https://doi.org/10.1016/j.jcrysgro.2006.12.031</u>
- [11] Luo, Y., Tu, Y., Yu, B., Liu, J., Li, J. and Jia, Z. (2007) Synthesis of Hierarchical Barium Tungstate Corns and Their Shape Evolution Process. *Materials Letters*, 61, 5250-5254. <u>https://doi.org/10.1016/j.matlet.2007.04.010</u>
- Zhang, X., Xie, Y., Xu, F. and Tian, X. (2004) Growth of BaWO4 Fishbone-Like Nanostructures in w/o Microemulsion. *Journal of Colloid and Interface Science*, 274, 118-121. <u>https://doi.org/10.1016/j.jcis.2004.01.048</u>
- [13] Liu, J., Wu, Q. and Ding, Y. (2005) Morphologies-Controlled Synthesis of CaWO4 Crystals by a Novel Supramolecular Template Method. *Journal of Crystal Growth*, 279, 410-414. <u>https://doi.org/10.1016/j.jcrysgro.2005.01.109</u>
- [14] Li, D., Wu, H., Li, Z., Cong, X., Sun, J., Ren, Z., Liu, L., Li, Y., Fan, D. and Hao, J. (2006) Multi-Phase Equilibrium Microemulsions-Based Routes to Synthesize Nanoscale BaWO4 Spheres, Cylinders and Rods. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **274**, 18-23. https://doi.org/10.1016/j.colsurfa.2005.08.033
- [15] He, J., Han, M., Shen, X. and Xu, Z. (2008) Crystal Hierarchically Splitting in

Growth of BaWO4 in Positive Cat-Anionic Microemulsion. Journal of Crystal Growth, 310, 4581-4586. https://doi.org/10.1016/j.jcrysgro.2008.08.001

- [16] Chen, D., Shen, G., Tang, K., Zheng, H. and Qian, Y. (2003) Low-Temperature Synthesis of Metal Tungstates Nanocrystallites in Ethylene Glycol. Materials Research Bulletin, 38, 1783-1789. https://doi.org/10.1016/j.materresbull.2003.09.004
- [17] Fan, W., Song, X., Sun, S. and Zhao, X. (2007) Microemulsion-Mediated Hydrothermal Synthesis and Characterization of Zircon-Type LaVO4 Nanowires. Journal of Solid State Chemistry, 180, 284-290. https://doi.org/10.1016/j.jssc.2006.10.019
- [18] Ge, W., Zhang, H., Wang, J., Liu, J., Li, H., Cheng, X., Xu, H., Xu, X., Hu, X. and Jiang, M. (2005) The Thermal and Optical Properties of BaWO4 Single Crystal. Journal of Crystal Growth, 276, 208-214. https://doi.org/10.1016/j.jcrysgro.2004.11.385
- [19] Tyagi, M., Sangeeta and Sabharwal, S.C. (2008) Luminescence Properties of BaWO4 Single Crystal. Journal of Luminescence, 128, 1528-1532. https://doi.org/10.1016/j.jlumin.2008.02.006
- [20] Chen, L., Gao, Y. and Zhu, J. (2008) Luminescent Properties of BaWO4 Films Prepared by Cell Electrochemical Technique. Materials Letters, 62, 3434-3436. https://doi.org/10.1016/j.matlet.2008.02.083
- [21] Rangappa, D., Fujiwara, T. and Yoshimura, M. (2006) Synthesis of Highly Crystallized BaWO4 Film by Chemical Reaction Method at Room Temperature. Solid State Sciences, 8, 1074-1078. https://doi.org/10.1016/j.solidstatesciences.2005.12.013
- [22] Basiev, T.T., Sobol, A.A., Voronko, Y.K. and Zverev, P.G. (2000) Spontaneous Raman Spectroscopy of Tungstate and Molybdate Crystals for Raman Lasers. Optical Materials, 15, 205-216. https://doi.org/10.1016/S0925-3467(00)00037-9
- [23] Zhang, X., Liao, J.Y., Yin, Z.W. and Wu, X.J. (2004) Improving Radiation Stability of Yttrium Ions Doped PbWO4 Crystals by Stoichiometric Tuning. Chemical Physics Letters, 383, 245-250. https://doi.org/10.1016/j.cplett.2003.11.020

Ҟ Scientific Research Publishing

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/ Or contact aces@scirp.org

