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Abstract 
In manufacturing process, it is necessary to measure change in CSD (Crystal 
Size Distribution) with time accurately because CSD is one of the most im-
portant indices that evaluate quality of products. FBRM (Focused Beam Ref-
lectance Measurement) can measure CLD (Chord Length Distribution) in 
line, but CLD is different from CSD because of principle of FBRM. However, 
if CSD is determined beforehand, CLD can be calculated from the CSD with 
statistical method. First, when crystal shape is defined from the characteristic 
crystal size, the matrix of each crystal shape which transforms CSD into CLD 
in a uniform manner is calculated with Monte Carlo analysis. Characteristic 
crystal size is added to the variables defining chord length in order to avoid 
complex integrals and apply the change in crystal shape with characteristic 
crystal size to the transforming matrix. Secondly, CSD and CLD are actually 
measured in suspension of acetaminophen in ethanol and suspension of L- 
arginine in water to demonstrate the validity of 2 matrices. Lastly, these ma-
trices are multiplied by some simple CSD models to test the properties of 
these matrices and demonstrate the utility of this transformation. 
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1. Introduction 

Inmanufacturing process of crystal, powder, or granule products, it is necessary 
to measure change in CSD (crystal size distribution) or PSD (particle size distri-
bution) with time accurately because CSD is one of the most important indices 
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that evaluate quality of products [1]. 
FBRM (focused beam reflectance measurement) can measure CLD (chord 

length distribution) in line, but it is well known that CLD is different from CSD 
because of principle of FBRM [2] [3]. In FBRM, focused beam from probe enters 
suspension in vessel, and chord length is measured based on detection time of 
backscattered light when beam runs cylindrically at high speed. Back scattered 
light results from beam which hits a crystal, but the chord length can differ from 
the crystal size because the beam doesn’t necessarily scan the crystal along the 
characteristic crystal size. However, if CSD is determined beforehand, CLD can 
be calculated from the CSD with statistical method [4]. 

In this paper, first, when crystal shape was defined from the characteristic 
crystal size, the matrix of each crystal shape which transforms CSD into CLD in 
a uniform manner was calculated with Monte Carlo analysis. Secondly, CSD and 
CLD were actually measured in suspension of acetaminophen (AAP) in ethanol 
and suspension of L-arginine (Arg) in water to demonstrate the validity of 2 ma-
trices. Lastly, these matrices were multiplied by some simple CSD models to test 
the properties of these matrices and demonstrate the utility of this transforma-
tion. 

Because this transformation is simply represented by a matrix, it is easy to ap-
ply the matrix to inverse transformation and this method is assumed to contri-
bute significantly to in-line measurement of CSD. In some of previous studies 
[2] [3], discretizing was used to solve complex integral problems. In this paper, 
by using Monte Carlo analysis instead of discretization, the transforming matrix 
can be calculated quickly and accurately. Translation, which is one of the va-
riables defining chord length, was made to exist within variable range and 
weighting was performed for each range in many of previous studies [2] [3]. In 
this paper, translation is made to exist within fixed sufficient range in order to 
avoid weightings in CLD calculation process. In addition, characteristic crystal 
size is added to the variables defining chord length, which have been composed 
of rotation angles around 3 axes and a translation [2] [3] [4], in order to avoid 
complex integrals and apply the change in crystal shape with characteristic crys-
tal size to the transforming matrix. 

2. Theory 
2.1. Principle of Chord Length Measurement with FBRM 

Particle Track G400, which can measure CLD in line based on FBRM, was used 
in this paper. Focused beam from probe enters suspension in vessel, and chord 
length is measured within a range of 1 to 1000 μm based on detection time of 
backscattered light when beam runs cylindrically at the speed of 2 m/sec. The 
concept of FBRM is shown in Figure 1. 

In Figure 1, the cylinder along which the beam runs has a large diameter in 
comparison to crystals within the measuring range, and so the beam path can be 
regarded as a straight line. 
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Figure 1. FBRM method of measurement. 

 
As seen from Figure 1, because the parts of crystals where chord lengths are 

measured differ from one another, CLD differs from CSD. 

2.2. Function Which Determines Chord Length 

First, it is considered that crystal shape P is defined only from vertex coordinates 
and that the vertex coordinates are mapping of characteristic crystal size LCS. At 
this time, Equation (1) is established. 

( ) ( )
1 2

CS 1 2 1 2

1 3

, ,
x x

L y y
z z

 
 = =  
 
 

P p p


 



                (1) 

where ip  is the ith position vector of vertex coordinate and P is 3 m×  matrix 
in which m position vectors of vertex coordinates defining crystal shape are 
placed in m columns. x  Axis is defined as the beam scanning direction, z axis 
as the beam traveling direction, and y axis as the other direction. Due to calcula-
tion, one of the 2 points which are the most distant from each other of all the 
vertex coordinates is sited at the origin. This model can be used when crystals 
are regarded as polyhedra. Then, a domain of LCS is represented by Equation (2) 
in order to adjust LCS to the measuring range of FBRM. 

CS1 m 1000 mLµ ≤ ≤ µ                       (2) 

Secondly, projection area prjP  of crystal seen from FBRM probe window is 
defined from crystal shape P and rotation angles xθ , yθ , and zθ  around 3 
axes. At this time, Equations (3) and (4) are established. 
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where the subscript rot means vertex coordinate after rotation, and projection 
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area prjP  simply discards information on z axis of rotP . Then, domains of xθ , 

yθ , and zθ  are represented by Equation (5). 

0 2π
0 2π

0 2π

x

y

z

θ
θ

θ

≤ ≤

≤ ≤

≤ ≤

                         (5) 

Thirdly, because the beam scans crystals along the zx  plane, translation to-
ward z axis or x  axis direction doesn’t change the relationship between projec-
tion area and trajectory of the beam. Therefore, projection area translP  including 
information on the distance from trajectory of the beam is defined only from 

prjP  and translation dy  toward y  axis. At this time, Equation (6) is estab-
lished. 

( ) rot,1 rot,2
transl prj

rot,1 rot,2
, d

d d

x x
y

y y y y
 

=  + + 
P P





           (6) 

where the subscript transl means vertex coordinate after translation, and translP  
is the matrix which adds dy  to y  coordinates of vertex coordinates prjP  be-
fore translation. Then, a domain of dy  is represented by Equation (7). 

,max ,maxd d dy y y− ≤ ≤                      (7) 

where it is desirable that ,  maxdy  is large enough for the largest crystal to be cal-
culated. In this paper, ,  maxdy  is defined as the distance between 2 points which 
are the most distant from each other of all the vertex coordinates of the crystal 
the characteristic crystal size of which is 1000 μm. 

Lastly, chord length LCL is defined as the length of line intersection of projec-
tion area translP  and an x  axis. To calculate LCL in a uniform manner, intersec-
tions ,p kx  of an x  axis and line segments between all combinations of 2 
points from m vertex coordinates of translP  are to be calculated. In the case that 
the line segment and an x  axis correspond and that the line segment and an 
x  axis don’t intersect, ,p kx  is defined as not a number (NaN). At this time, 

Equation (8) is established. 

( )
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P      (8) 

The set of mC2 intersection coordinates ,p kx  is represented by a vector pX  
in Equation (9). 

( )2,1 , ,mp p p k p Cx x x=X                 (9) 

At this time, the chord length LCL is represented by Equation (10). 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
max min  max min 1 m
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p p p p
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X X X X
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X X X X
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However, when LCL is smaller than the measuring lower limit or all of the in-
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tersection coordinates ,p kx  are NaN, LCL is defined as 0, and the range of LCL is 
represented by Equation (11). 

CL CL0 or 1 m 1000 mL L= µ ≤ ≤ µ               (11) 

2.3. Strict Transformation from CSD to CLD with Multiple Integral 

A domain of crystal size in the jth fraction when the domain of crystal size in 
Equation (2) is divided into n equal parts by a logarithmic scale is represented by 
Equation (12). 

( )3 1

CS,j CS CS, 1 CS,, 10  m
j

n
j jL L L L

−

+≤ ≤ = µ            (12) 

Similarly, a range of chord length in the ith fraction when the range of chord 
length in Equation (11) except 0 is divided into n equal parts by a logarithmic 
scale is represented by Equation (13). 

( )3 1

CL, CL CL, 1 CL,, 10  m
i

n
i i iL L L L

−

+≤ ≤ = µ            (13) 

Originally, it is not necessarily required that the number of fractions on crys-
tal size is the same to that on chord length. At this time, the probability that one 
of an infinitely large number of crystals in Equation (12) is measured as the 
chord length in Equation (13) is to be calculated. First of all, LCS by a logarithmic 
scale and xθ , yθ , zθ , and dy  by a linear scale are assumed to be distributed 
uniformly in Equation (12), (5), and (7) respectively. Therefore, joint probability 
density function f of 5 independent variables satisfies the relationship expressed 
by Equation (14). 

( )CS

0
log x y z d

f f f f f
L yθ θ θ

∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂
          (14) 

Then, 5 variables are arranged to be denoted by a vector s  in Equation (15). 

( )CSd d log d d d dx y z dL yθ θ θ=s                 (15) 

Moreover, domains of 5 variables in Equations (12), (5), and (7) are arranged 
to be denoted by 5

jE ⊂  , and Equation (16) is established. 

d
j

j E
K K= = ∫ s                      (16) 

where the integrated value in all of the domains K is independent of fraction 
number j because the integrated values in all of the fractions by a logarithmic 
scale are the same to one another when the domain of crystal size is divided into 
equal parts by a logarithmic scale. In the domains jE , the probability ( )ijS  
that a crystal is measured as the chord length in Equation (13) is represented by 
Equation (17). 

( ) CL, CL CL, 1
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∈
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S             (17) 

Because chord length is clearly defined from 5 independent variables (see Sec-
tion 2.2), the integrated value ijM  in the target range is uniquely calculated for 
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each combination of fraction numbers i  and j . In addition, ijM  doesn’t 
change with ,maxdy  when ,maxdy  is larger than a certain value (see Section 2.2). 
In actual vessels, ,maxdy  is much larger than this value and so the value of ijM  
is the same to the value calculated in Equation (17). Therefore, if Equation (17) 
is computable, the probability is strictly calculated. This probability is a contri-
bution of the domain of crystal size in the jth fraction to the range of chord 
length in the ith fraction. Contributions of the domains of crystal size in n frac-
tions are multiplied by the numbers of crystals and summed up to calculate the 
expected value of the range of chord length in the ith fraction. Therefore, Equa-
tion (18) is established. 

( )CLD, CSD,
1

n

i jij
j

N N
=

= ∑ S                  (18) 

where CLD,iN  is the count of crystals with chord lengths in the ith fraction and 

CSD, jN  is the number of crystals with crystal sizes in the jth fraction. Equation 
(18) can be generalized and by using vectors CLDN  and CSDN  which adapt 
vector indices to fraction numbers of CLD and CSD, Equation (19) is estab-
lished. 

CLD CSD =N S N                      (19) 

For the following discussion, S  is called shape transformation matrix. 

2.4. Approximate Transformation from CSD to CLD with  
Monte Carlo Analysis 

The integration range of Equation (17) is too complex for the exact solution to 
be obtained. Therefore, Monte Carlo analysis is performed with uniformly dis-
tributed pseudorandom number r . First of all, r  is uniformly distributed in 
the range represented by Equation (20). 

0 1r< <                             (20) 

At this time, to make 5 independent variables have the domains in Equations 
(12), (5), and (7), and to make Equation (14) about probability density estab-
lished, 5 independent variables are defined as Equations (21), (22), and (23) with 
random number. 
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( ),max 52 1d dy y r= −                      (23) 

However, Equation (22) is established only if the directions of crystals are un-
iformly distributed regardless of crystal shape and the direction of the suspen-
sion flow. 5 random numbers change for each trial and the dependent variable 
LCL is calculated on each trial. By using the total number of trials KMC instead of 
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sample space K in Equation (17) and the number of times MC,ijM  that the 
events have happened (i.e. the number of times that crystals have measured as 
the chord length in Equation (13)) instead of probability event ijM , the proba-
bility is calculated likewise in Equation (17) to obtain Equation (24). 

( ) ( )MCMC,
MC

MC

ij K
ijij

M
K

→∞= →S S                (24) 

where the subscript MC means the value about Monte Carlo analysis. If r is true 
random number, the approximate probability ( )MC ij

S  approaches the exact 
probability ( )ijS  as the total number of trials KMC increases. In this paper, 
pseudorandom number was created with MATLAB 7.5.0 (R2007b). 

3. Experiments 
3.1. Substances 

In this paper, the verification experiment was performed with acetaminophen 
(CH3CONHC6H4OH, abbreviated to AAP) and L-arginine (C6H14N4O2, abbre-
viated to Arg). AAP, the molecular weight of which is 151.16, is a white crystal-
line compound, hardly soluble in water and readily soluble in ethanol. AAP has 
3 kinds of polymorphs. AAP is often used as an analgesic antipyretic or a cold 
medicine. In the verification experiment, ethanol was purchased from Wako 
Pure Chemical Industries, Ltd. (Osaka, Japan) and AAP from Tokyo Chemical 
Industry Co., Ltd. (Tokyo, Japan). Then, Arg, the molecular weight of which is 
174.02, is a white crystalline basic amino acid, readily soluble in water and hard-
ly soluble in ethanol. Arg has 2 kinds of pseudo polymorphs: anhydrate and de-
hydrate. Arg also activates immune function and accelerates cell proliferation. In 
the verification experiment, Arg was purchased from Wako Pure Chemical In-
dustries, Ltd. (Osaka, Japan). 

3.2. Experimental Apparatus 

Solution temperature and CLD were measured with the apparatus shown in 
Figure 2. 
 

 
Figure 2. Experimental apparatus 
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Solution temperature was measured with platinum electrode (Pt100,  
JISC1604-1997/IEC 751). CLD was measured with FBRM (made by Mettler-To- 
ledo, model G400). 

Measurement conditions of FBRM are described below. 
• The measuring range is 1 - 1000 μm. 
• The measurement mode is Macro. 
• The measuring range is divided into 30 equal parts by a logarithmic scale. 
• The wavelength of the laser beam is 780 μm. 

3.3. Experimental Procedure 
3.3.1. Verification Experiment with AAP 
AAP (45 g) was added to ethanol (300 mL) to prepare a saturated solution at 
20˚C. Then, with the solution held at 20˚C, AAP seed crystals were added to the 
solution under 5 conditions. The suspension of AAP in ethanol was stirred and 
the crystals were washed for about 30 min with CLD from FBRM measured. Af-
ter it was confirmed that CLD was steady, the suspension was sampled at the 
same time that CLD was recorded and CSD was measured with an optical mi-
croscope. The experimental condition is showed in Table 1. 

In Table 1, coarse seed means crystals from a reagent bottle and fine seed 
means crystals crashed with a mortar. 

3.3.2. Verification Experiment with Arg 
The experiment with suspension of Arg in water was performed likewise in sec-
tion 3.3.1. The experimental condition is showed in Table 1. 

3.3.3. Creation of Shape Transformation Matrix 
Shape transformation matrix S  on each substance was created with MATLAB 
7.5.0 (R2007b). At this time, AAP crystal images (Figure 3) obtained in section 
3.3.1 and Arg crystal images (Figure 4) obtained in section 3.3.2 were used as  
 
Table 1. Experimental condition. 

Cond.  
No. 

Substance 
Mass of  
solute 
[kg] 

Mass of  
solvent 

[kg] 

Agitation  
rate 

[rpm] 

Saturation  
temperature 

[˚C] 

Mass of  
fine seed 

[g] 

Mass of  
coarse seed 

[g] 

1      2 2 

2      4 2 

3 AAP 0.045 0.237 300 20 6 2 

4      2 4 

5      2 6 

6      2 2 

7      4 2 

8 Arg 0.048 0.3 300 20 6 2 

9      2 6 

10      2 8 
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Figure 3. Sample of AAP crystal image. Saturation was set to −100 with Microsoft Office 
2010. Scale bar the length of which was calculated from a micrometer was inserted with 
Microsoft Paint. 
 

 
Figure 4. Sample of Arg image. Saturation was set to −100 and brightness to 100 with 
Microsoft Office 2010. Scale bar the length of which was calculated from a micrometer 
was inserted with Microsoft Paint. 
 
reference, and crystal shape ( )CSLP  of each crystal was defined as following. 
The crystal shape of AAP is similar regardless of crystal size and the shape is an 
octahedron of 3 axes ratio of 1:1:1.5 which intersect at the middle points (Figure 
5). The crystal shape of Arg is similar regardless of crystal size and the shape is a 
rectangular solid of 3 sides ratio of 1:1:3 (Figure 6). 

In addition, the characteristic crystal size of each substance was defined as the 
black line of each model shape in Figure 5 and Figure 6. The total number of 
trials in Monte Carlo analysis was 25,000,000 and the size of shape transforma-
tion matrix was 30 30× . 
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Figure 5. Model shape of AAP. 

 

 
Figure 6. Model shape of Arg. 

3.4. Error Evaluation 

The absolute value of CLD hardly has quantitative information, because ,  maxdy  
in an actual system is unknown and a much larger value than was used in prob-
ability calculation, and changes with time. However, when ,  maxdy  is sufficiently 
large, each relative value of elements contained in S  doesn’t change with 

,  maxdy . Therefore, if CSD after shape transformation is directly proportional to 
CLD, it can be confirmed that the shape transformation matrix is accurate and 
that the theory in this paper is valid. In addition, in the case that CSD tries to be 
measured with FBRM apparatus in practice, CSD cannot be calculated with CLD 
and S  immediately from the above reason. At this time, the data needs han-
dling correctly. For example, the concentration is measured secondarily and 
temporary CSD is multiplied by a constant based on mass balance. In this case, 
L3-weighted distribution is usually used, and so the shape transformation matrix 
S  is assumed to function the best when the error of L3-weighted distribution is 
practically small. L3-Weighted distribution 3μ  is calculated from no-weighted 
distribution N by using Equation (25). 

1
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3
3 1

0 0 0
0 0 0

, ,
0 0 0

0 0 0

R

R

Ri i i
Ri

Rn

L
L

L L L
L

L

+

 
 
 
 

= = = 
 
 
 
  

L N L

 

 

     

 

     

 

µ      (25) 

where L is a diagonal matrix the ith diagonal element of which is the average of 
the ith fraction RiL  and RiL  is the geometric average of both ends iL  and 

1iL +  of the ith fraction. For 3 no-weighted distributions: CSD measured with an 
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optical microscope before and after the transformation and CLD from FBRM, 
L3-weighted distributions were calculated by using Equation (25). Then, every 
L3-weighted distribution was normalized and the total amount of every 
L3-weighted distribution was adjusted to 1 to exclude quantitative discussion. 
Normalized L3-weighted distribution a  is represented by Equation (26). 

3

3 1

=a
µ
µ

                        (26) 

At this time, CSD measured with an optical microscope was assumed to be a 
calculated vector, CLD from FBRM a observed vector, and relative error E was 
defined as a 2-norm of difference between a calculated vector and observed one. 
E is represented by Equation (27). 

2calc obsE = −a a                     (27) 

E from CSD after the transformation was compared with that before the 
transformation, and the validity of S  was discussed. 

3.5. Test of Properties of Matrices with Model CSD 

The properties of the shape transformation matrices of AAP and Arg, which 
were created in section 3.3.3 and the validity of which was demonstrated in sec-
tion 3.4, were tested by being multiplied by the following 2 CSD models to 
demonstrate the utility of the transformation. Figure 7 shows the case that crys-
tals exist only in fraction No. 28 and Figure 8 shows the case that every fraction 
has the same number of crystals. The total amount of every CSD model is ad-
justed to 1. 

4. Results and Discussion 

For example, normalized L3-weighted distributions under cond. 3 and cond. 9 
are shown in Figure 9 and Figure 10 respectively. 
 

 
Figure 7. CSD model 1. 
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Figure 8. CSD model 2. 

 

 
Figure 9. Normalized L3-weighted distribution under cond. 3. 

 

 
Figure 10. Normalized L3-weighted distribution under cond. 9. 
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In Figure 9 and Figure 10, calc. means values from optical microscopy, obs. 
values from FBRM, and before and after values before and after the shape trans-
formation respectively. The examples in Figure 9 and Figure 10 show that CSD 
was transformed to approach CLD in both systems. The results of the error 
evaluation performed in the manner of section 3.4 are shown in Table 2. 

At this time, the rate of change in relative error obtained before and after 
shape transformation was calculated. In addition, the average of the rate of 
change by each substance was calculated to demonstrate the validity of the shape 
transformation matrix on each substance. 

Table 2 shows that contrary to expectations the error was increased by the 
transformation under cond. 7 and cond. 8. This phenomenon was assumed to 
occur because under these 2 conditions the suspensions contained many fine 
seed crystals, the aspect ratio of which was smaller than that of model shape de-
fined in Figure 6. Therefore, this result shows that S  didn’t function correctly 
when actual crystal shape differed greatly from defined crystal shape P . How-
ever, the errors under the other conditions and the average by each substance 
show that the errors were almost always decreased greatly and that the method 
in this paper was assumed to be valid. 

Then, CLDs which S  on AAP and Arg, the validity of which had been 
demonstrated, multiplied by 2 CSD models shown in Figure 7 and Figure 8 be-
came are shown in Figures 11-14. The total amount of every CLD was adjusted 
to 1. 

Figure 11 and Figure 12 show that both of the distributions were assumed to 
become broad in contrast to the monodispersed system in Figure 7 and that 
both of the most frequent values came to exist in fraction No. 25 less than the 
fraction number in which the most frequent value of CSD model 1 had existed 
by 3. This phenomenon was assumed to show that crystals were rarely measured 
as the same chord length as the characteristic crystal size and that almost all of 
the crystals were measured around the edge or at a slant. In addition, crystals  
 
Table 2. Error evaluation. 

Cond. No. Substance 
Mass of  

fine seed [g] 
Mass of  

coarse seed [g] 
Ebefore 

[-] 
Eafter 
[-] 

Changing  
rate [%] 

Ave. 
[%] 

1  2 2 0.731 0.494 −32.41  

2  4 2 0.615 0.464 −24.45  

3 AAP 6 2 0.440 0.362 −17.77 −24.46 

4  2 4 0.681 0.491 −27.83  

5  2 6 0.577 0.463 −19.86  

6  2 2 0.126 0.124 −1.52  

7  4 2 0.208 0.212 2.01  

8 Arg 6 2 0.168 0.205 22.28 −4.22 

9  2 6 0.375 0.292 −22.71  

10  2 8 0.232 0.182 −21.71  
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Figure 11. AAP CLD from CSD model 1. 

 

 
Figure 12. Arg CLD from CSD model 1. 

 

 
Figure 13. AAP CLD from CSD model 2. 
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Figure 14. Arg CLD from CSD model 2. 
 
were sometimes measured as a longer chord length than the characteristic crystal 
size only for Arg. This was because the chord length around the body diagonal 
line was longer than the characteristic crystal size. The effect that crystals were 
measured around the edge or at a slant affected CSD complexly, depending on 
crystal shape. For example, Figure 12 shows that CLD was split in contrast to 
the monodispersed system in Figure 7. Inversely, CSD doesn’t necessarily show 
multiple peaks when CLD shows multiple peaks, which is assumed to show that 
serious errors can occur in the case that CLD is handled as it is as CSD. Moreo-
ver, taking the fact that CLD wasn’t split in Figure 11 into account, it is assumed 
that this effect heavily depends on crystal shape and that the data cannot be 
transformed in a unified manner for all of the crystal shapes. 

Then, Figure 13 and Figure 14 show that the relative number was increased 
as the chord length became larger within the ranges of small fraction numbers 
and of middle fraction numbers in contrast to the uniform distribution in Fig-
ure 8. This was because the probability that the crystals overlapped with trajec-
tory of the beam was decreased as the crystal size became smaller against the 
fixed constant yd. However, within the ranges of large fraction numbers, the 
trend was reversed. This was assumed to occur because of the effect that crystals 
were measured around the edge or at a slant, which is mentioned above. 

Consequently, the state of CSD cannot be discussed from CLD without using 
shape transformation matrix, and the utility of the shape transformation matrix 
calculated in this paper was assumed to be demonstrated. 

5. Conclusions 

By using Monte Carlo analysis, shape transformation matrices which trans-
formed CSD into CLD for the crystal shape defined beforehand were created. 
The validity of these shape transformation matrices were tested with the suspen-
sion of AAP in ethanol and the suspension of Arg in water. The verification ex-
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periments show that the relative error between CLD and CSD after transforma-
tion was significantly smaller than that between CLD and CSD before transfor-
mation only in the case that the actual crystal shapes corresponded with the de-
finition. Therefore, the validity of this transformation method of CSD with the 
shape transformation matrix was demonstrated. Then, the virtual experiments in 
which the CLDs were obtained by the shape transformation matrices multiplied 
by some CSD models show that the trend and the statistics of CSD greatly dif-
fered from those of CLD and that the degree of the difference depended on the 
crystal shape. In other words, the state of CSD cannot be discussed from CLD 
without using shape transformation matrix, and the utility of the shape trans-
formation matrix calculated in this paper was demonstrated. 

In this paper, the crystal shape was assumed to be similar regardless of crystal 
size for simplicity, but actually, shape transformation matrix can be created even 
if crystal shape is defined as a mapping of the crystal size. This mapping is accu-
rately researched beforehand and inserted in the shape transformation matrix to 
enable the matrix to shape-transform for more general cases. In addition, by us-
ing the shape transformation matrix with the method in this paper for inverse 
transformation, the algorithm transforming CLD into CSD is created to realize 
real-time monitoring of CSD with FBRM. Many of the operations containing 
matrix can be performed in a very short time with numerical analysis software. 
In other words, the fact that shape-transforming operator was obtained as ma-
trix in this paper seems to contribute to transforming CLD into CSD with the 
quality of in-line in FBRM remaining. 
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Nomenclature 

A   normalized 3μ       [-] 
E  domain of s        [ 3rad m⋅ ] 
E  relative error       [-] 
f   joint probability density function   [ 3 1rad m− −⋅ ] 

K  sample space       [ 3rad m⋅ ] 
L   set of LR in diagonal matrix    [m] 
LCL  chord length       [m] 
LCS  crystal size       [m] 
LR  geometric average of both ends of fraction [m] 
m   number of vertices      [-] 
M  probability event      [ 3rad m⋅ ] 
N   no-weighted distribution     [#] 

N  number of crystals      [#] 
N  number of fractions      [-] 
p   position vector of vertex coordinates  [m] 
p    set of p  in matrix      [m] 

r  pseudorandom number     [-] 
s   set of 5 independent variables    [ 3rad m⋅ ] 
S   shape transformation matrix    [-] 
X  x-coordinate       [m] 

px   intersection of x -axis and line segment  [m] 

pX   set of px  in vector      [m] 
Y  y-coordinate       [m] 
yd  translation toward y-axis     [m] 
yd, max required minimax value of yd    [m] 
z  z-coordinate       [m] 

3μ   L3-weighted distribution     [# m3] 

xθ   rotation angle around x -axis    [rad] 

yθ   rotation angle around y-axis    [rad] 

zθ   rotation angle around z-axis    [rad] 
after after transformation 
before before transformation 
calc  calculated value 
CLD chord length distribution 
CSD crystal size distribution 
MC  Monte Carlo analysis 
obs  observed value 
prj  projection 
rot  after rotation 
transl after translation 
AAP acetaminophen 
Arg  L-arginine 
FBRM focused beam reflectance measurement 
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