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Abstract 
The Cox proportional hazard model is being used extensively in oncology in 
studying the relationship between survival times and prognostic factors. The 
main question that needs to be addressed with respect to the applicability of 
the Cox PH model is whether the proportional hazard assumption is met. 
Failure to justify the subject assumption will lead to misleading results. In ad-
dition, identifying the correct functional form of the continuous covariates is 
an important aspect in the development of a Cox proportional hazard model. 
The purpose of this study is to develop an extended Cox regression model for 
breast cancer survival data which takes non-proportional hazards and 
non-linear effects that exist in prognostic factors into consideration. 
Non-proportional hazards and non-linear effects are detected using methods 
based on residuals. An extended Cox model with non-linear effects and 
time-varying effects is proposed to adjust the Cox proportional hazard 
model. Age and tumor size were found to have nonlinear effects. Progesterone 
receptor assay status and age violated the proportional hazard assumption in 
the Cox model. Quadratic effect of age and progesterone receptor assay status 
had hazard ratio that changes with time. We have introduced a statistical 
model to overcome the presence of the proportional hazard assumption viola-
tion for the Cox proportional hazard model for breast cancer data. The pro-
posed extended model considers the time varying nature of the hazard ratio 
and non-linear effects of the covariates. Our improved Cox model gives a 
better insight on the hazard rates associated with the breast cancer risk fac-
tors. 
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1. Introduction 

According to the statistics currently cited by the American Cancer Society, about 
252,710 women will receive a new diagnosis of breast cancer and about 40,610 
women will die from breast cancer. Breast cancer is the second leading cause of 
cancer death in women. Breast cancer has been studied worldwide to improve 
survival by focusing on finding causes, reducing risks, developing new diagnos-
tic tests and creating new treatment protocols [1]. Prognostic models play a ma-
jor role in these studies. These models can be used to obtain estimates of risks of 
different adverse events such as death and recurrence based on the clinical, life-
style, and socio-economic factors associated with the disease. This information 
acquired is important in designing treatment protocols, increasing disease 
awareness and preventing possible causes of cancer. A prognostic model will be 
a valuable tool only if it is developed carefully, evaluating the underlying model 
assumptions and inadequacies and determining if the most relevant model to 
address the study objectives is selected. The assessment of the adequacy of statis-
tical models is only possible through the combination of several statistical ana-
lyses and proper investigation regarding the purposes for which the statistical 
model was initially conceptualized and developed for. 

Cox proportional hazard (CPH) model [2] is a popular method that is being 
used in studying the relationship between survival times and explanatory va-
riables. Even though there are many model adequacy methods that have been 
developed for the CPH model, usage of these methods does not seem to be very 
popular in applications of this model in real life data. The goal of this study is to 
develop an extended Cox regression model to breast cancer data by assessing 
and adjusting non-linear effects and non-proportional hazards that exist in the 
data. Different methods that can be used to assess non-proportionalities of the 
covariates are discussed. Also, the ways that can be used to assess the linearity of 
the continuous covariates and the approaches to identify the correct form of 
non-linear effects are presented. 

2. Data 

Female breast cancer patients of age 20 years and above who were diagnosed 
with invasive ductal carcinoma during the years 1990 to 2000 were extracted 
from the SEER breast cancer database for the present study [3]. This is the most 
common type of breast cancer and accounts for about 70% breast cancer inci-
dence. The selected study data consists of a random sample of 1000 patients. Po-
tential prognostic factors, including race and age of the patient, tumor size, 
lymph node status, extension of the tumor, tumor stage and outcome of proge-
sterone receptor assay (PRA) were selected according to the current knowledge 
about the risks of cancer. Race of the patient is categorized to white, black and 
other. Age was measured at the diagnosis. Tumor size is the largest dimension or 
diameter of the primary tumor and it is measured at the diagnosis in millime-
ters. The variable lymph node status represents whether regional lymph nodes 
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examined pathologically contain metastases. Lymph node-negative means the 
lymph nodes do not contain cancer and lymph node-positive means the lymph 
nodes contain cancer. Cancer cells in regional lymph nodes may mean that can-
cer is more likely to spread to other parts of the body. Stage variable in our study 
represents AJCC stage 3rd edition (1988-2003). It is known that some breast 
cancer cells need hormones to grow. These cancer cells have hormone receptors 
inside which are special proteins that when hormones attach to those, the cancer 
cells grow. A pathologist examines the cancer cells and determines whether they 
have many hormone receptors (hormone receptor-positive) or few or no hor-
mone receptors (hormone receptor-negative). These hormones are estrogen and 
progesterone. Breast cancers that are estrogen-positive also tend to be progeste-
rone positive, vice versa [4]. As our data showed a strong relationship between 
these two test results, we studied only progesterone receptor status (PRA). Sur-
vival time until cancer related death is the response variable of interest and death 
by other causes, lost to follow up or alive at the end of the recording period is 
considered as censored. 

3. Methods 
3.1. Cox Proportional Hazard Model 

The Cox Proportional Hazard (CPH) model [2] is the most commonly used 
method of statistical modeling of survival data. It models the hazard of a subject 
at a given time with a given set of covariate values. Let ti be the failure time for 
subject i, where 1,2, ,i n= � . Then according to the CPH model, the hazard 
function for subject i at time ti (>0) conditional on the set of covariates 

( )1 , ,i i piZ Z= �Z  is given by 

( ) ( ) ( )0 1 1| expi i i i p pih t h t z zβ β= + +�z ,                (1) 

where ( )0h t  is the baseline hazard function and denotes the hazard function 
when all covariate values take zero (reference values) and ( )1, , pβ β= �β  are 
the corresponding regression coefficients for Z, the given covariates. 

Let the model given in Equation (1) consist of one explanatory variable Z 
which takes values 1 (say, treatment) and 0 (say, control). Then the hazard ratio 
for a subject with covariate value 1 versus a subject with covariate value 0 at time 
t is given by 

( ) ( )
( )

( ) ( )
( ) ( )0

0

| 1 exp
exp

| 0
h t Z h t

HR t
h t Z h t

β
β

=
= = =

=
.         (2) 

This implies that the ratio of the two hazards is a constant which does not de-
pend on time, t. That is, the hazards of the two groups remain proportional over 
time. This is the key underlying assumption of the CPH model and is called the 
proportional hazards assumption. 

3.2. Assessing the Model Adequacy 

Once we fit a model to the data we need to verify whether the model adequately 
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fits to the data before proceeding to the model interpretations. Failure to do so 
will result in incorrect decisions and conclusions about the data. Similar to 
standard regression models, the linearity assumption of continuous covariates 
and the existence of unusual/influential values need to be assessed in CPH mod-
el. Most importantly, the main underlying assumption of the CPH model needs 
to be checked for any violations. In some cases, the data will not satisfy the PH 
assumption and the use of the CPH model to describe the data without correct-
ing the assumption violations will lead to misinterpreted results. Different types 
of residuals can be computed from the CPH model to cater to specific aspects of 
model adequacy, namely, Martingale, Schoenfeld and score residuals. Such resi-
dual based methods of assessing the overall model adequacy, correct functional 
form of the continuous covariates, unusual/influential observations and propor-
tional hazards assumption are presented in the following sections. More details 
about the tests can be found in [5] and [6]. 

3.2.1. Overall Goodness-of-Fit 
Overall goodness of fit of the model can be assessed using Cox-Snell residual 
plot [7]. The idea is to plot Cox -Snell residuals versus the cumulative hazard 
function of the Cox-Snell residuals. The points on the plot should fall on a 
straight line with unit slope if the data fits the model well. However, the final de-
cision of the model shouldn’t be taken solely on this plot. In practice, it has been 
found that Cox-Snell plot is not sensitive to small model inadequacies and not 
reliable in small sample sizes. Therefore, along with this overall goodness-of-fit 
test we should proceed to check separately for the situations where model in-
adequacies can occur in a CPH model. 

3.2.2. Correct Functional Form 
Identifying the correct functional form of the continuous covariates is a crucial 
step in model development. However, it is not practiced much in health data 
analysis. Cumulative Martingale residual plots with the continuous covariates 
are useful in assessing the linearity of the variables. The smoothed curve to the 
plot indicates whether the effect of the variable is linear or non-linear. In addi-
tion, this smoothed curve gives a hint on the functional form of the relationship 
of the covariate to the hazard. Another method that can be used to evaluate the 
linearity is to use the observed and simulated cumulative Martingale residuals 
[8]. Under the linearity assumption cumulative Martingale residuals can be ap-
proximated by zero mean Gaussian process. Hence, a comparison of observed 
and simulated cumulative Martingale residuals would reveal any departures 
from the linearity assumption of continuous covariate. The method is to use one 
thousand simulations of the cumulative Martingale residual paths and compute 
the proportion of times that the maximum absolute values of the simulated 
paths exceeds the maximum absolute value of the observed cumulative Martin-
gale residual path. This value serves as the p-value for a supremum type of for-
mal test linearity assumption. If the simulated paths exceed the observed path 
relatively few times, then it is an indication of the violation of the assumption. 
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3.2.3. Unusual and Influential Data Values 
Detection of unusual data values and influential data values on the parameter es-
timates of the CPH model can be done using statistics similar to leverage and 
dfbeta in standard linear regression models. Score residuals have similar proper-
ties as leverage values. For continuous predictors, the further the value is from 
the mean, the larger the absolute value of the score residual is. Graphs of the 
score residuals and covariates aid in identifying any subjects with unusual data 
values. A statistic that is similar to dfbeta that approximately measures the dif-
ference between a particular coefficient value and the new coefficient if a value is 
removed from the sample can be computed for CPH model using score residuals 
and covariance matrix of the estimated coefficients [9]. This value is sometimes 
called scaled score residual and plots of these residuals and continuous cova-
riates are useful to examine any subjects that influence the parameter estimates. 

3.2.4. Proportional Hazard Assumption 
Scaled Schoenfeld residuals [10] can be used to identify violations of propor-
tional hazards assumption. The method is to include a coefficient that varies 
with time to the model instead of constant coefficient (β) in Equation (1). The 
time varying coefficient takes the form 

( ) ( )j j j jt g tβ β γ= +                          (3) 

where ( )jg t  is a function of time that the user has to specify. Approximated 
scaled Schoenfeld residuals have a mean at time t given by ( )j jg tγ . As a result, 
the plot of scaled Schoenfeld residuals versus time can be used to assess whether 

jγ  zero is or not. That is, if slope is zero then ( )jg t  doesn’t depend on time 
and hence the hazard ratio is also constant with respect to time. In addition, a 
formal test to check whether jγ  is zero has been proposed by [10]. 

Another method that can be used is to use a transformation of Martingale re-
siduals which is called score process [8]. Under the assumption of proportional 
hazards this process can be approximated by zero mean Gaussian process. 
Hence, a comparison of observed score process and simulated score processes 
under the PH assumption would reveal any departures from the assumption. 
The method is to use one thousand simulations of the score process and com-
pute the proportion of times that the maximum absolute values of the simulated 
processes exceeds the maximum absolute value of the observed score process. 
This value serves as the p-value for a supremum type of formal test of PH as-
sumption. If the simulated processes exceed the observed process relatively few 
times, then it is an indication of the violation of the assumption. In addition, 
graphs of these observed and simulated processes can be used to identify the de-
partures from the proportional hazards. 

3.3. Adjusting Non-Linear Effects of the Covariates 

When continuous predictors are present, the common and convenient practice 
is to include them as categorical predictors or as linear predictors in the model 
being studied. Categorization of a continuous covariate might lead to subjective 
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categorizations and loss of information. Also, if a continuous predictor is incor-
rectly included as a linear effect then it might lead to misleading conclusions 
from the model. When non-linear effects are detected, we should attempt to find 
the correct functional form of the effect or a function that closely follows the 
non-linear effect. In practice, most of the time non-linear effects do not take 
common parabolic nature. Therefore, more advanced transformations are 
needed to approximate the functional form of the covariates. 

Fractional Polynomial Method 
Fractional polynomials can be used to describe complex relationships between 
the outcome and continuous covariates. Authors of [11] have developed a model 
selection procedure to select the best fitting fractional polynomial for a given 
covariate. The method is to use one polynomial term model (FP1) and a 
two-term polynomial (FP2) to capture the pattern of the relationship between 
the covariate and the outcome. Then a deviance difference test is used to com-
pare and choose the best fractional polynomial model. Default order of entering 
covariates to this procedure is based on the statistical significance with respect to 
p-value. Optionally, we can choose the order that variables enter. Also, we can 
specify certain continuous variables of interest in the model to be linear. Assume 
that we have one continuous covariate (X) which we aim to find the correct 
functional form and time variable T. Then, candidate fractional models can be 
written as 

FP1 model: ( ) ( ) { }1
0 1, exp ph x t h t xβ=                             (4) 

FP2 model: ( ) ( ) { }1 2
0 1 2, exp p ph x t h t x xβ β= +                        (5) 

where p1 and p2 are selected from the set (−2, −1, 0, 1, 2, 3); 0 corresponds to lo-
garithm transformation. A summary of the process of fractional polynomial 
model building is given in Figure 1. More details about this method can be 
found in [11]. 

3.4. Adjusting Non-Proportional Hazards Using Time Varying  
Effects Model 

The common method that is used to account for non-proportionality in a cova-
riate is stratification, that is, use of the proportional hazard violated variable as a 
grouping variable rather than a regressor in the model. Even though this method 
is simple and easy to understand it has some drawbacks. When stratified Cox 
model is fitted, it is not possible to estimate hazard ratios associated with the 
stratifying variable (non-PH variable). This will be a major limitation if the stra-
tification variable is an important characteristic under the study. In addition, 
this method is more suitable for qualitative covariates as there will be loss of in-
formation if used for quantitative variable. Also, when the number of predictor 
variables that violates the proportional hazard assumption is large, stratified Cox 
model is not very useful. 

Given the limitations of the stratified Cox model, we want to introduce an ex-
tended Cox model with time varying coefficients which can be used to address  
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Figure 1. Process of fractional polynomial model selection. 

 
those limitations. The idea is to create a time dependent coefficient, ( )tβ , for 
the covariate which violates the proportional hazard assumption. That is, 
( ) ( )t f tβ β= ; where ( )f t  is a function of time to reflect the time varying 

nature of the hazard ratio under study. ( )f t  could be based on the theoretical 
knowledge about the covariate or scaled Schoenfeld residuals with smoothed 
curves. The Cox model with time varying coefficients for ith individual 
( 1,2, ,i n= � ) can be written in the form 

( ) ( ) ( ){ }1exp p
i o j ijjh t h t t Zβ

=
= ∑ ;                  (6) 

where ( )oh t  is the baseline hazard function, i.e. hazard function when all cova-
riates (Zj; 1,2, ,j p= � ) takes the reference values at time = 0 (time at origin).  

Recall that in the CPH model hazard ratio, ( )
( )

i

o

h t
h t

 can be obtained by ( )exp jβ   

which is constant over the time. In contrast, in the time varying coefficient Cox 
model, the hazard ratio is time dependent. That is, ( )( )exp j tβ  is the relative 
hazard of two individuals at time t whose Zj variable differs by one unit and the 
remaining variables take the same values for both of them. 

4. Results 

The mean and the standard deviation of follow up times of the patients are 10.5 
years and 5.2 years respectively and median survival time is 11 years. Sixty five 
percent of the study sample were censored observations; that is, alive at the end 
of the follow up period, lost to follow up or death by other cause. Overall 5 years 
and 10 years survival probabilities are 80% and 70% respectively. Tumor size at 
diagnosis had a mean of 22 mm with a standard deviation of 18.4 mm and age at 
diagnosis had a mean of 58.2 years with a standard deviation of 13.5 years. Age 
at diagnosis was centered at the average for meaningful interpretations for the 
baseline survival probability. Initial evaluation of the covariates was done using 
the univariate CPH models and all the covariates were significant at 5% signi-
ficance level. Next, a multivariate CPH model was developed using backward 
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elimination process (removal significance level = 0.05). Only the variable exten-
sion was not significant in the model. This served as the selected standard CPH 
model where summary of the estimates are shown in Table 1. 

The next step is to evaluate the adequacy of this standard CPH model in the 
aim of improving the model if there are any inadequacies present. First, overall 
model adequacy was assessed using Cox-Snell residuals. The corresponding 
Cox-Snell residual plot is shown in Figure 2 where the graph deviates from the 
reference line which goes through the origin. Since there is some evidence for 
overall model inadequacy, the next step was to explore what makes the model 
inadequate. Three main aspects of the model were assessed; namely linearity of 
the continuous covariates, unusual/influential data points and the proportional 
hazard assumption. 

First, any unusual values and/or influential values were identified. Score resi-
duals were computed for the standard CPH model and plotted against age and 
tumor size to identify whether there are any records that have values that deviate 
from the rest of the data to a great degree. Figure 3(a) and Figure 3(b) display 
the score residual plots for age at diagnosis and tumor size at diagnosis. It can be 
seen that there are two values far apart from the other values on the top right of 
the score residual plot for age. Also, there are four values that differ from the 
other values on the score residual plot for tumor size. Dfbeta and age and tumor 
size were plotted and shown in Figure 3(c) and Figure 3(d) to identify any 
strong influential values on the parameter estimates. 

It appears that two data points in the plot for age and five data points on the 
plot for tumor size deviate from the rest of data points to a great extent. These 
identified values were further assessed to check what subjects correspond to 
these unusual behaviors and how they affect the parameter estimates. A model 
without these six identified extreme values was fitted and there was 53% reduc-
tion of the coefficient estimate for race-other term. Tumor size change was more  

 
Table 1. Results of the standard cox proportional hazards model. 

Variable Parameter Estimate p-value Hazard Ratio 
95% Hazard Ratio Confidence 

Limits 

Race-black 0.59654 0.0013 1.816 1.261 2.615 

Race-other −0.47493 0.1310 0.622 0.336 1.152 

Lymphnode-positive 0.72224 <0.0001 2.059 1.463 2.898 

Lymphnode-unknown 0.79662 <0.0001 2.218 1.504 3.271 

Stage II 0.59220 0.0018 1.808 1.248 2.620 

Stage III 0.84954 0.0003 2.339 1.481 3.692 

Stage IV 1.88322 <0.0001 6.575 3.709 11.654 

PRA-positive 0.42802 0.0004 1.534 1.211 1.943 

Age 0.03798 <0.0001 1.039 1.029 1.048 

Tumor Size 0.00692 0.0065 1.007 1.002 1.012 
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Figure 2. Cox-Snell residual plot for the standard cox proportional hazards 
model. 

 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

Figure 3. Score residual plot for (a) Age; (b) Tumor size and dfbeta plots for (c) Age; (d) Tumor size. 
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than a 100% change (0.007 to 0.016) which is expected because five of the identi-
fied records had larger tumor sizes, greater than 130 mm. Breast tumor sizes are 
typically less than 50 mm and sometimes they can be more than 50 mm. How-
ever, observance of a tumor size that is greater than 130 mm clinically is possible 
but it is rare [12]. Also, some inconsistencies of the values for tumor size, lymph 
node status and stage can be found in these five data points. Hence, we decided 
to disregard the identified data points from the further analysis as they are un-
usual in the study data. 

There are two continuous covariates that we aim to identify the correct func-
tional form, namely age and tumor size at diagnosis. Martingale residuals for the 
null model without the predictors were computed and plotted with age and tu-
mor size along with smoothed curve. Figure 4 and Figure 5 represent the cor-
responding smoothed residual plots for age and tumor size respectively. It is 
clear that age and tumor size have a non-linear relationship with estimated log 
hazard. Both covariates appear to have higher estimated log hazard as the cova-
riate values increase. We further assessed the non-linear nature of these rela-
tionships in the aim of finding the best form of function that describes effects of 
age and tumor size on log hazard. 

The method of fractional polynomials was used to capture the nature of the 
non-linear effects. Both age and tumor size revealed significant transformations 
which confirm the observation we obtained from Figure 4 and Figure 5. The  

most appropriate transformation for age is 
2

age
age centered

10
FP  =  

 
 and for 

tumor size is size
sizeln
100

FP  =  
 

. 

The standard CPH models with linear terms and the fractional polynomial 
model with non-linear terms for age and tumor size were compared. Partial like-
lihood ratio test revealed test statistic of G = 3461.324 − 3380.917 = 80.407 with 
2 degrees of freedom p-value of 2.68 × 10−18. Hence, the model with fractional 
polynomials for the non-linear effects is significantly different from the standard 
CPH models with linear terms. 

Next, we used scaled Schoenfeld residual plots and simulated score residual 
plots to graphically assess the proportional hazards assumption of the CPH 
model adjusted for non-linear effects. Scaled Schoenfeld residual plots with 
smoothed curve are shown in Figure 6 for race-other, lymph node-positive, age2 
and PRA-positive. These plots indicate possible proportional hazard violations 
in the corresponding covariates. Age2 seems to have an upward trend/non-linear. 
Almost all of the points in race-other plot lie around the horizontal line. There 
are some isolated points on top which might be the reason for the slight upward 
trend. Lymph node-unknown and stage III don’t seem to have a large trend or 
deviation from the horizontal line. The plot of PRA-positive shows a clear 
downward trend. It seems like an exponential decay and then leveling off as time 
increases. Plots for other covariates display any noticeable deviations from the 
horizontal line. That is, those covariates support proportional hazards  
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Figure 4. Smoothed martingale plot for age (smooth = 0.615). 

 
assumption. We also performed the test of proportional hazards by [10] and the 
results are summarized in Table 2. Comparison of the observations from these 
plots with the test gives evidence for significant departures from proportional 
hazards for the variables, race-other, PRA-positive and age2. Also, the test gives a 
significant result of proportional hazard assumption violation by stage III. 

Observed and simulated score residuals plots for stage III, age2, tumor size 
and PRA-positive are shown in Figure 7. Plots for other variables didn’t indicate 
evidence for violation of proportional hazard assumption. Observed paths for 
PRA-positive and tumor size clearly deviate from the cloud of simulated paths. 
Stage III also shows some slight deviations from the simulated paths. As we can 
observe only ten simulated paths in the graph compared to the thousand simula-
tions done for each graph, it is difficult to make strong observations from these 
plots. Supremum tests of non-proportionality which consider all the simulated 
paths would give more accurate findings. The corresponding supremum test re-
sults are given in Table 3. These results confirms the non-proportional hazards 
observed under scaled Schoenfeld residuals and plots for PRA and age variable. 
In addition, this supremum test suggests that stage III and lymph node-unknown 
variables do not satisfy the proportional hazards assumption. Evidence for  
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Figure 5. Smoothed martingale plot for tumor size (smooth = 0.529). 

 
proportional hazards assumption violation was clearly visible in the plots that we 
examined and in the tests that we performed for age2 and PRA. Age2 seemed to 
have a log hazard that has a linear upward trend and PRA-positive shows expo-
nential type decay. Lymph node-positive, stage III and ln(tumor size) showed 
some evidence of non-proportionality. 

In order to develop a model that accounts for these varying hazard ratios, we 
incorporated time varying coefficients to all these possible non-proportional co-
variates. We included an interaction term for coefficients of race-other, stage III, 
lymph node-positive and age2 to vary with time linearly, ( )t tβ β= × . PRA was 
allowed to vary in time in two ways, continuously and discretely; we named 
them model A and model B respectively. The vector z includes all the covariates 
with time fixed effects and β  is the corresponding vector of model coefficients. 
Even though, ln(tumor size), race-other, lymph node-positive and stage III 
showed some weak evidence of non-proportional hazards, we included these 
terms in both models with time varying coefficients (Model A & Model B).  
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(a)                                                           (b) 

 
(c)                                                           (d) 

Figure 6. Scaled schoenfeld residual plots. 

 
However, time varying coefficients of these terms were not statistically signifi-
cant in both models A and B. 

Model A: Exponentially decaying effect for PRA where rate of decay (k) was 
estimated from the scaled Schoenfeld smoothed residual plots. 

( )PRA PRAe kttβ β −= . The model takes the form 

( )( ) ( ) ( ) ( ) ( ) ( )({
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) )}

2
0 age PRA positive

ln tumor size race other

lymph node positive

race other

, exp age PRA positive

ln tumor size race other

lymphnode positive

stageIII

h t t h t t t

t t

t

t

β β

β β

β

β

= × + ×

+ × + ×

+ ×

′+ × +

Z

zβ

 

Model B: A model with piecewise hazard function for PRA was developed. 
That is, hazard ratio of PRA to vary discretely with time. Time scale was parti-
tioned into 2 year intervals and five dummy variables were created to represent 
the piecewise effects of PRA as shown in Table 4. 

Model B takes the form 
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Table 2. Test of proportional hazards by Grambsch & Therneau (1994). 

Variable rho Chi.Sq. p-value 

Race-black −0.01735 0.09 0.6130 

Race-other 0.12678 4.88 0.0274 

Lymphnode-positive 0.0599 0.99 0.2300 

Lymphnode-unknown −0.03146 0.3 0.6030 

Stage II −0.0412 0.46 0.3470 

Stage III −0.113 3.38 0.0160 

Stage IV −0.05397 0.79 0.1800 

PRA-positive −0.20563 12.28 0.0000 

Age2 0.13425 5.24 0.0487 

ln(Tumor Size) −0.08725 1.94 0.1390 

 
Table 3. Test of Proportional Hazards by Lin et al. (1993). 

Variable Maximum Absolute Value Pr. > Max.Abs. Value 

Race-black 0.7521 0.4790 

Race-other 1.1417 0.1720 

Lymphnode-positive 1.1650 0.3880 

Lymphnode-unknown 1.8189 0.0690 

Stage II 1.2435 0.4890 

Stage III 2.4043 0.0080 

Stage IV 1.0565 0.2860 

PRA-positive 2.0891 <0.0001 

Age2 1.4477 0.0010 

ln(Tumor Size) 2.2399 0.4190 

 
Table 4. Dummy variables for PRA in Model B. 

Piecewise time  
dependent PRA 

0 2t≤ <  2 4t≤ <  4 6t≤ <  6 8t≤ <  8 t≤  

( )PRA1 tβ  1 0 0 0 0 

( )PRA2 tβ  0 1 0 0 0 

( )PRA3 tβ  0 0 1 0 0 

( )PRA4 tβ  0 0 0 1 0 

 

( )( ) ( ) ( ) ( ) ( )({
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
0 age PRA1

PRA2 PRA3

PRA4 ln tumor size

race other lymph node positive

race other

, exp age PRA positive

PRA positive PRA positive

PRA positive ln tumor size

race other

lymphnode positive

h t t h t t t

t t

t t

t t

t

β β

β β

β β

β β

β

= × + ×

+ × + ×

+ × + ×

+ × +

× + ×

Z

)}stageIII ′+ Zβ
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(a)                                                    (b) 

 
(c)                                                    (d) 

Figure 7. Observed and simulated score residual paths. 

 
Estimated hazard ratios for PRA from the Model B are given in Table 5. It can 

be seen that after 4 years hazard ratio for PRA-positive is approximately equal to 
one. That is, the estimated risk for PRA-positive and PRA-negative individuals is 
almost same after 4 years. By observing the p-values, it can be seen that hazard 
ratios for time intervals 0 - 2 years and 2 - 4 years are statistically significant. 
Hence, we decided to create three time intervals 0 - 2, 2 - 4 and >4 years instead 
of five intervals and refit the piecewise Cox model. 

Modified Model B: New dummy variables for PRA are defined with two time 
interaction terms as below. 

( )PRA1

1; 0 2
0; 2

t
t

t
β

≤ <
=  ≥

 

and 

( )PRA2

1; 2 4
0; 0 2 and 4

t
t

t t
β

≤ <
=  ≤ < ≥
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Table 5. Estimated hazard ratios for PRA in model B. 

Time Interval (Years) p-value Hazard Ratio 95% Confidence Interval 

0 - 2 <0.0001 3.725 2.034 6.823 

2 - 4 0.0023 2.051 1.292 3.254 

4 - 6 0.5513 1.191 0.670 2.119 

6 - 8 0.9504 1.021 0.524 1.989 

>8 0.9631 0.989 0.611 1.600 

 
Modified model B takes the form 

( )( ) ( ) ( ) ( ) ( )({
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) )}

0 age PRA1

PRA2 ln tumor size

race other lym

FP

ph node positive

race other

, exp age PRA positive

PRA positive ln tumor size

race other

lymphnode positive stageIII

h t t h t t t

t t

t t

t

β β

β β

β β

β

= × + ×

+ × + ×

+ × +

′× + × +

Z

Zβ
 

We compared the AIC values of the two time varying coefficient models that 
we fitted where it was 3386.739 for model A and 3387.685 for modified model B. 
Therefore, according to the Akaike’s information criteria, both model fits are 
similar. Hence, both of these models were considered for our next step. 

As the final step in model building we checked the significance of all possible 
two way interactions in both model A and modified model B. We added all the 
interaction terms to the non-linear and non-PH adjusted model and used back-
ward elimination method to remove the nonsignificant interaction terms. Only 

( ) ( )PRA postive lymphnode unknown×  term was left significant in Model A. To 
compare whether the interaction model makes a significant improvement than 
the main effects model, we performed likelihood ratio test. Partial likelihood ra-
tio test statistic is ( )2 1681.37 1678.464 2.906G = − − − − =    with a p-value of 
0.0886 from chi-square distribution with 1 degree of freedom. 

Time varying piecewise model with interactions resulted significant interac-
tions of lymph node-unknown with race-other, stage II, PRA-positive and tumor 
size and also interaction of age with race-other. To compare whether the interac-
tion model makes a significant improvement than the main effects model, we 
performed likelihood ratio test. Partial likelihood ratio test statistic is 

( )2 1681.37 1672.95 8.42G = − − − − =    with a p-value of 0.2970 from 
chi-square distribution with 5 degrees of freedom. 

The improvements made by the interaction models are not significant at 5% 
significance level. Hence, considering law of parsimony, we decided to proceed 
with the models with non-linear terms and time varying coefficients but without 
covariate interactions. 

A summary of parameter estimates for the two time varying models and the 
standard CPH model is given in Table A1. Estimated coefficients for race and 
lymph node are similar in all three models. For stage, the parameter estimates 
are higher in the standard CPH model than in the two extended Cox models. As 
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seen from the log-likelihood and the AIC values, both extended models fit the 
data similarly resulting similar parameter estimates for all the linear and PH sa-
tisfied covariates. 

For a continuous variable with a linear effect, hazard ratio is interpreted as the 
relative risk between two individuals with a unit difference of covariate values 
and it doesn’t depend on the actual values that the variables take. Hence, under 
the standard CPH model, the estimated hazard ratio for tumor size can be ob-
tained as below. ˆ zβ  represents the linear predictor for the covariate values that 
are being held constant (at reference levels). To obtain a more interpretable ha-
zard ratio, let’s consider a 10 unit difference in tumor size. This will result in a 
hazard ratio of 

( )�

( )�
( ) ( )
( ) ( )

( )( )

0

0

ˆexp 0.0069 20,size 20
ˆexp 0.0069 10,size 10

exp 0.6176 20 10

1.07

h th t

h th t

× × +=
=

× × +=

= × −

=

z

z

β

β

 

which indicates a 7% increase in hazard. Under the standard CPH model, this 
hazard ratio stays the same for any 10 unit increase in tumor size. 

In contrast, when there is a non-linear effect present, hazard ratio depends on 
the covariate values that we are interested in and not only on the difference be-
tween values. How the hazard ratio is computed for the non-linear effect of tu-
mor size under the piecewise Cox model is given below. 

The parameter estimate for the ln(tumor size) from the piecewise Cox model 
is 0.6176. Say we need to estimate the hazard ratio between two individuals with 
tumor size 10 mm and 20 mm given that other covariate values are the same for 
both of them. Then the hazard function at tumor size = 10 mm is, 

( )� ( ) ( )( )0
ˆ,size 10 exp 0.6176 ln 10h t h t= = × × + zβ  

and for tumor size = 20 mm, 

( )� ( ) ( )( )0
ˆ,size 20 exp 0.6176 ln 20h t h t= = × × + zβ  

Now, the ratio of the two hazards is 

( )�

( )�
( ) ( )( )
( ) ( )( )

0

0

ˆexp 0.6176 ln 20,size 20
ˆexp 0.6176 ln 10,size 10

20exp 0.6176 ln 1.53
10

h th t

h th t

× × +=
=

× × +=

  = × =  
  

z

z

β

β  

That is, for a 10 unit increase in tumor size from 10 mm, the risk of cancer 
death increases by about 50%. Unlike the hazard ratio estimated by the standard 
CPH model, the non-linear effect of tumor size results different hazard ratios for 
different tumor sizes that are being compared. It can be shown that hazard ratio 
for a 10 unit increase in tumor size from 20 mm to 30 mm is 1.28 and from 30 
mm to 40 mm, it is 1.19. 

https://doi.org/10.4236/abcr.2018.71005


M. Perera, C. Tsokos 
 

 

DOI: 10.4236/abcr.2018.71005 82 Advances in Breast Cancer Research 
 

In the standard CPH model where we assumed PH satisfied for PRA, the ha-
zard ratio for an individual with PRA-positive compared to an individual with 
PRA-negative is ( )exp 0.4303 1.53= . However, we found evidence that 
PRA-positive violated the PH assumption. That is, it doesn’t have a hazard ratio 
constant over time. Also, according to the literature on PRA status of women 
with breast cancer, we can find clinical evidence for this observation [13]. 

In model A, we fitted a continuous function of time for the effect of PRA. 
That means at each point of time it results a different hazard ratio for 
PRA-positive relative to PRA-negative. 

According to model A, estimated hazard ratio at time t is given by 

( ) ( )( )PRA positiveHR exp 1.3726 exp 0.23 t= × − ∗  

In modified model B, we modeled the effect of PRA in a piecewise time vary-
ing manner. For each 2 year interval from the start, we let the model estimate 
different coefficient for PRA-positive. After 4 years the hazards for PRA-positive 
and PRA-negative was not significantly different where it was near 1. Using the 
parameter estimates from Table A1, the hazard ratio for PRA-positive at time t 
is given by 

( )

( )
( )
( )

PRA positive

exp 0.0543 1.3152 ; 0 2

HR exp 0.0543 0.7182 ; 2 4

exp 0.0543 ; 4

t

t

t

+ ≤ <


= + ≤ <
 ≤

 

Table 6 presents the estimated time varying hazard ratios for PRA-positive. 
At the start time, both models A and modified B seem to estimate the relative 
risk similarly with hazard ratios 3.95 and 3.93 respectively. Overall, model A es-
timates are higher than the modified model B estimates. Piecewise Cox model 
approaches to HR = 1 faster than the continuous time varying Cox model. In-
itially, an individual with PRA-positive has about four times of risk of cancer 
death than an individual with PRA-negative. At time equal to 2 years, the risk of 
cancer death for a PRA-positive individual is about twice of a PRA-negative 
person. 

Because age has a non-linear effect and non-PH effect, special attention 
should be given when obtaining hazard ratios for age. We present the corres-
ponding computations below for the piecewise Cox model. Say we need to esti-
mate the hazard ratio between a 68.2 years old individual and 58.2 years old 
(mean age) individual given that other covariate values are the same for both of 
them. Then the hazard function at age = 58.2 years is 

( )�

( )

( ) { }

2 2

0

0

, age 58.2

58.2 58.2 58.2 58.2 ˆexp 0.0422 0.0038
10 10

ˆexp

h t

h t t

h t

=

 − −    = × + × +    
     

=

z

z

β

β
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Table 6. Estimated time-varying hazard ratios for PRA-positive. 

Time (t) 
Hazard Ratio 

Cox model with continuous time varying 
effects (Model A) 

Cox model with piecewise time varying 
effects (Modified model B) 

0 3.95 3.93 

2 2.38 2.17 

4 1.73 1.06 

6 1.41 1.06 

8 1.24 1.06 

 
and at age = 68.2 years is 

( )�

( )
2 2

0

, age 68.2

68.2 58.2 68.2 58.2 ˆexp 0.0422 0.0038
10 10

h t

h t t

=

 − −    = × + × +    
     

zβ
 

Now, the ratio of the two hazards is 

( )�

( )�

( )

( ) { }

{ }

2 2

0

0

2 2

, age 68.2

,age 58.2

68.2 58.2 68.2 58.2 ˆexp 0.0422 0.0038
10 10

ˆexp

68.2 58.2 68.2 58.2exp 0.0422 0.0038
10 10

exp 0.0422 0.0038

h t

h t

h t t

h t

t

t

=

=

 − −    × + × +    
     =

 − −    = × + ×    
     

= + ×

z

z

β

β

 
Therefore, we get a time dependent expression for the relative hazard for two 

individuals for a 10 year increase in age from the mean age. Using this expres-
sion we computed relative hazards for different times and the results are given in 
Table 7. It can be seen that as time increases the hazard ratios are increasing at a 
slower rate. However, under the standard CPH model, relative risk for an in-
crease of 10 years from mean age is ( )exp 0.0381 10 1.46× =  irrespective of the 
time. When the model is adjusted for non-linear and non-PH effects we get dif-
ferent risk ratios than we would get from unadjusted Cox model. 

To further visualize how the adjustments to the Cox model make the hazard 
estimations different, we graph hazard ratios with respect to the age increments 
and time as shown in Figure 8. It shows that at time = 0 hazard ratios for age are 
increased with age. However, approximately from time = 5 years, lower ages 
have higher risk than the mean age 58.2 years (baseline). When age is higher 
than the mean age, risks are increasing rapidly. 

Figure 8 clearly shows how hazard ratios for age changes linearly with time 
and quadratically with age. Therefore, if we had used the standard CPH model to 
estimate the hazard ratios for age, it would not provide a flexible hazard ratio  
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Table 7. Estimated hazard ratios for age under the Cox model with piecewise time vary-
ing effects (Modified model B). 

Time (t) 
Hazard Ratio 

10 year increase from mean age 20 year increase from mean age 

0 1.09 1.18 

2 1.10 1.21 

4 1.10 1.25 

6 1.11 1.28 

8 1.12 1.31 

 

 
Figure 8. Hazard ratio plot for age adjusted for non-linearity and non-proportionality. 

 
function as our extended Cox model which could explain the risk of cancer 
deaths more closely to the true pattern. 

Recall that the summary of the estimated standard and extended Cox model 
parameters is given in Table A1. The following interpretations can be obtained 
by those estimates. 

Under the piecewise Cox model (modified model B), risk of cancer death of a 
subject in race-black is about exp(0.5179) = 1.7 times higher than a subject in 
race-white. In contrast, hazard for a subject in race-other compared to a subject 
in race-white is 0.5. That is, race-white breast cancer patient is two times likely 
to have a death from cancer than a patient in race-other. Risk of cancer death for 
breast cancer patients gets larger as the stage of the disease gets higher as seen 
from Table A1 where hazard ratios for stage II, III and IV relative to stage I are 
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1.3, 1.8 and 6.2 respectively. All these estimates for the time-fixed variables are 
close to the estimates of the standard CPH model except for stage II and III. Al-
so, these estimates are very close to the hazard ratio estimates from model A. 

5. Discussion 
Evaluating the model assumptions in CPH model should be an integral part of 
model building. Otherwise, it will result in incorrect conclusions about the data. 
Once model inadequacies are identified, they should be addressed before making 
any model interpretations. One of the important aspects to focus on when 
building a CPH model is the correct functional form of the continuous cova-
riates. The simplest method is to categorize these covariates and include them in 
the model. This will lead to loss of information present in the covariate and the 
model would not provide accurate estimations about the survival probabilities. 
Including a continuous covariate as a linear effect is better than including it as a 
categorical variable. However, if the true effect is non-linear, then identifying the 
correct form of the effect will increase the predictive accuracy of the model. 
Fractional polynomial method [11] that we used in the present study is a good 
method to select the most appropriate functional form for the continuous cova-
riates. Also, spline functions, which are piecewise polynomials connected across 
intervals of a given continuous covariate, are useful in finding the underlying 
non-linear effects of the covariates [14]. 

Standard Cox model provide hazard ratios that are constant over the time. 
However, if there are covariates which have hazard ratios that change with time, 
then the standard CPH model will misinterpret the data. Hence, assessing the 
proportional hazard assumption in CPH model will not only help to decide the 
validity of the model, but also will provide a better understanding about the co-
variate effects. The major assumption of the CPH model, proportional hazards, 
is not easy to evaluate correctly. In some situations, the presence of other model 
inadequacies such as influential values and non-linear effects may cause propor-
tional hazards tests to reveal significant non-proportionalities when actually they 
are proportional. Therefore, one first should assess and adjust the model for 
other inadequacies before performing proportional hazards tests. 

Non-proportional hazards are more evident when longer follow up times are 
studied. If one is not interested in studying time effects, considering a shorter 
follow-up time might avoid the issue of dealing with non-proportional hazards. 
A simple and easy method to take non-proportional hazards into account is to 
use stratified Cox model. That is, stratify the CPH model by the non-proportional 
covariate. However, this method is mostly suitable when there is one non-PH 
variable and it is a categorical variable. Also, when the CPH model is stratified 
by a covariate, we are unable to estimate the corresponding effect on the survival 
probability. A more flexible method to handle non-proportional hazards is the 
use of extended Cox regression model with time varying effects/hazard ratios. 
This model can address more than one non-PH variable both continuous and 
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categorical. Also, it provides estimates of time varying hazard ratios. This is the 
approach we used in this study to address non-proportional hazards. One diffi-
culty of using this model is to find the correct function of time to include in the 
time varying coefficients. Schoenfeld residual plots used to detect proportional 
hazard violations might guide to find this function of time. Depending on the 
study objectives and clinical plausibility time varying effects can be modeled as 
piecewise functions or continuous functions. 

In the present study, we identified and adjusted non-linearities and 
non-proportionalities that exist in the breast cancer data. The model develop-
ment started by fitting the standard Cox model and then checked for the model 
inadequacies: non-linear effects, non-proportional hazards and unusual/influential 
values. Our analysis suggested few unusual and influential data points. We per-
formed a sensitivity analysis of the parameter estimates with and without these 
points and found out that removal of these points changes the estimates of 
race-other and tumor size by more than 50%. Also, there were some inconsistent 
values taken by lymph node, extension and stage variables among the data 
points in this identified list. Therefore, these data points were not considered for 
further analysis of the current study. Our model building process revealed 
non-linear effects in both of the continuous covariates that we considered. The 
method of fractional polynomials proposed a logarithm effect for tumor size at 
diagnosis and quadratic effect for age at diagnosis. Our finding of a quadratic 
effect was consistent with findings of a similar study of breast cancer [15]. This 
effect suggests higher risk of cancer death for younger females and older female 
relative to middle aged females. 

PRA and age were found to be violating the proportional hazards assumption 
under all the evaluation methods that were considered. Non-proportionality of 
the PRA was modelled through a continuous time dependent function guided by 
scaled Schoenfeld residual plot. Also, a piecewise time dependent function was 
used to model the time dependency of the PRA effect. In both of these models 
the effect of age was modelled through a time dependent quadratic effect. Both 
of these extended Cox models had very close log-likelihood values and AIC val-
ues. However, the estimated hazard ratios were fairly different for PRA under 
these two competing models. Up to 4 years both models gave similar relative 
risks of We found that under the piecewise effect Cox model that risk of 
PRA-positive relative to PRA-negative is not significant after around 4 years. 
This finding is consistent with the results of similar studies on breast cancer [13] 
where they discuss that the difference of the effects of PRA-positive and 
PRA-negative diminishes after around 5 years. According to our continuous 
time varying effect model, it seemed the differences in the risk decrease but at a 
lower rate and it approaches 1 approximately 13 years from the date of diagno-
sis. Considering this fact, the piecewise Cox model is more suitable for the data 
being studied. The effect that we found for age is interesting in that it contained 
both non-linear and non-proportional hazards. According to our extended Cox 
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model, age had a linear effect on hazard ratio up to around 3 years and after that 
it shows a quadratic effect (Figure 8). For example, given that the time is more 
than 6 years from the diagnosis, an individual as young as 28.2 years old has at 
least the same risk of cancer death as a 68.2 years old individual. This result is 
consistent with a similar discussion where they suggested a higher risk of breast 
cancer for younger and older female than the middle aged females [15]. 

6. Conclusion 

We have identified that effects of age and tumor size at diagnosis on the hazard 
function are quadratic and logarithmic respectively. Also, we found that age and 
PRA-positive violate the assumption of proportional hazards. To address all 
these inadequacies of the standard Cox model, we have developed a more flexi-
ble extended Cox model with non-linear effects for age and tumor size and with 
non-PH effects of PRA and age described by a piecewise time dependent coeffi-
cient and linear time dependent coefficient respectively. This model gives im-
proved and more accurate estimates of the risks of cancer specific death for 
women diagnosed with breast cancer. 
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Appendix 
Table A1. A Comparison of initial and the extended Cox proportional hazards models on breast cancer data. 

Variable 
Standard CPH model 

Cox model with continuous time varying 
effects (Model A) 

Cox model with piecewise time vary-
ing effects (Modified model B) 

β̂  
Hazard 
Ratio 

95% Confidence 
Interval β̂  

Hazard 
Ratio 

95% Confidence 
Interval β̂  

Hazard 
Ratio 

95% Confidence 
Interval 

Race-black 0.6001 1.816 1.261 2.615 0.5168 1.677 1.162 2.420 0.5179 1.678 1.163 2.423 

Race-other −0.4758 0.622 0.336 1.152 −0.6768 0.508 0.272 0.950 -0.6728 0.510 0.273 0.954 

Lymphnode-positive 0.7231 2.059 1.463 2.898 0.7591 2.136 1.521 3.000 0.7599 2.138 1.522 3.004 

Lymphnode-unknown 0.7998 2.218 1.504 3.271 0.8205 2.272 1.525 3.384 0.8195 2.269 1.523 3.381 

Stage II 0.5933 1.808 1.248 2.620 0.2789 1.322 0.895 1.951 0.2783 1.321 0.894 1.951 

Stage III 0.8522 2.339 1.481 3.692 0.5741 1.776 1.099 2.870 0.5710 1.770 1.095 2.862 

Stage IV 1.8908 6.575 3.709 11.654 1.8176 6.157 3.354 11.303 1.8209 6.177 3.363 11.348 

Tumor size 0.0069 1.007 1.002 1.012         

FPsize     0.6205 1.860 1.489 2.324 0.6176 1.854 1.484 2.317 

Age 0.0381 1.039 1.029 1.048         

FPage     0.0424 1.043 1.025 1.062 0.0422 1.043 1.024 1.062 

FPage × time     0.0039 1.004 1.001 1.007 0.0038 1.004 1.001 1.007 

PRA-positive 0.4303 1.534 1.211 1.943     0.0543 1.056 0.763 1.461 

PRA × e kt
PRAβ −      1.3726 3.946 2.336 6.666     

PRA × ( )1PRA tβ          1.3152 3.725 2.034 6.824 

PRA × ( )2PRA tβ          0.7182 2.051 1.292 3.254 

FPsize = ln(tumor size) and FPage = age2. 
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