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Abstract 
Resistant starch type 3 (RS3) produced from high amylose food sources 
through retrogradation or enzymatic process is known to have physiological 
function as dietary fiber. Fermentation of RS3 by colonic microorganisms 
produced SCFA (acetate, propionate, and butyrate), maintained the health of 
colon, balance of gut microbiota, preventing inflammatory bowel diseases 
(IBD) and colon cancer. RS3 in this study was produced from IR-42 and Inpa-
ri-16 broken rice by enzymatic treatment (combination of amylase-pullulanase). 
The Resistant Starch was fermented for 12 and 24 h by colonic microbiota 
(extracted from healthy human subject), Clostiridium butyricum BCC-B2571, 
or Eubacterium rectale DSM 17629. SCFA produced was analyzed by gas 
chromatography. Treatment by amylase-pullulanase combination was advan-
tageous to increase their RS3 content. The result showed that after enzymatic 
process, the RS3 content of IR-42 (41.13%) was not significantly different (p < 
0.05) from that of Inpari-16 (37.70%). High concentration of acetate (82.5 
mM) and propionate (7.5 mM) were produced by colonic microbiota after 12 
h fermentation and best concentration of butyrate (6.8 mM) was produced by 
colonic microbiota after 24 h fermentation. It is clear that utilization of colon-
ic microbiota rather than single strain was better in the production of SCFA. 
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1. Introduction 
Healthy digestive system is increasingly important, in line with changes in diet 
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and lifestyles. Imbalanced diet, such as not enough consuming dietary fiber, can 
harm the colon health that can lead to colon cancer. In healthy individuals, 
composition of the gut microbiota is very diverse, which is beneficial for colonic 
health. However, a loss of diversity combined with emerging imbalances be-
tween the proportions of bacterial strains can have severe consequences. Disrup-
tion of the equilibrium is called dysbiosis, associated with diarrhea, inflammato-
ry bowel diseases (IBD), colorectal cancer as well as certain liver diseases and al-
lergies, and nutrition-related conditions such as obesity, type 2 diabetes and ce-
liac disease. Altered compositions of intestinal microbiota also affect the central 
nervous system as gut and brain are connected by a multitude of communication 
pathways used by bacterial metabolites and transmitters [1]. So, it is not sur-
prising that even mental and neuro-developmental disorders, for example de-
pression, anxiety and autism, could be linked to dysbiosis of the gut microbiota. 

Dietary fiber intake can reduce risk of inflammatory bowel disease, cardi-
ovascular disease, colon cancer, obesity and diabetes [2] [3]. In 2012, colorectal 
cancer (CRC) covered approximately 1.4 million people [4] andthere are about 
80% of CRC cases related to diet, 15% of which are caused by genetic, while the 
rest comes from other factors, including environment [5]. Food product with 
high dietary fiber such as Resistant Starch type 3 (RS3) can be used to prevent 
that. 

Resistant starch (RS) refers to starch and starch degradation products that es-
cape from digestion in the small intestine of healthy individuals. Resistant 
starch, not digested in the small intestine, has physiological function as dietary 
fibers.Some types of resistant starch (RS1, RS2, and RS3) are fermented by the 
colonic microbiota and produce metabolite such as short chain fatty acids 
(SCFA): acetate, propionate, butyrate, and lactate. SCFAs is involved in many 
factors related to the health of colon,including the composition of gut microbi-
ota, regulation of the immune system, inhibition of pathogens, intestinal motili-
ty, energy recovery, metabolic syndrome, bowel disorders, and colon cancer [6] 
[7] [8]. In colon, fermentationis carried by microbes such as the genus Eubacte-
rium, Peptostreptococci, Clostridia, Roseburia spp, and Butyrofibriofi brisolven, 
these microbesexcrete starch degrading enzymes [9]. 

Applications of resistant starch in food products as prebiotics and food ingre-
dients and their consumption are expected to maintain the health of colon, bal-
ance of gut microbiota and prevent colon cancer. Various studies had been 
conducted to produce RS flour. Basically, RS3 can be produced from high starch 
materials such as rice, sweet potato, banana, cassava, etc. Rice is food source, 
largely composed of starch. Rice milling will produce broken rice at considerable 
amount and currently, broken rice utilization is still limited, even regarded as 
waste or consumed as animal feed. Potential of the broken rice’s to be developed 
as RS, can be the solution to increase its economical value. Brokenrice produc-
tion in Indonesia reached about 16% of MPD (milled rice), or about 11.4 million 
tons annually [10]. Purwani et al. [11] reported that RS3 content of rice was 
higher when produced using combination of amylase-pullulanase by 27%, com-
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pared with the treatment of these two enzymes individually. Tan [12] reported 
RS3 content of the rice was increased to 49.7%, when produced using combina-
tion of amylase-pullulanase. Guraya et al. [13] reported that RS3 content of rice 
was increased by 13% when produced using pullulanasefollowed by heating at a 
temperature of 121˚C, 30 min, cooling at 1˚C and followed by freeze drying. 
Kim et al. [14] reported that RS3 of rice starch was increased when produced 
using α-amylase followed by a combination of heat treatment at 121˚C, 15 min-
then cooled at 4˚C for 24 h, resulting in RS3 content of approximately16%. 

Zhao and Lin [15] reported that RS3 from corn starch previously hydrolyzed 
with citric acid, improved the liquid infant’s stools, and that fermentation of RS3 
at 37˚C for 0, 12, 24 h increased butyric acid in line with the fermentation time. 
Sharp and Macfarlane [16] reported that RS could stimulate the growth (in vi-
tro) of butyrate-producing bacteria Clostridia. Colonic microbial composition 
and production of SCFA through fermentation of RS was also reported by other 
researcher [17]. 

In our study, RS3 was made through combination of retrogradation (interac-
tion between amylose fractions) and enzymatic hydrolysis (amylase-pullulanase). 
Then, RS3 was fermented by either colonic microbiota, or individual bacteria: 
Clostridium butyricum BCC-B2571, and Eubacterium rectale DSM 17629. The 
aim of this research were to find out the effect of these bacterial fermentation on 
the SFCA compositions. 

2. Materials and Methods 
2.1. Rice and Chemicals 

Broken rice IR-42 and Inpari-16 were obtained from the Indonesia Center for 
RiceResearch, Sukamandi, Indonesia. Two types of starch degradation enzymes 
were from Novozymes. Enzyme used were: alpha-amilase (Liquozymes® Supra) 
135 KNU/g and Pullulanase (Dextrozymes® DX 1.5X) 510 NPUN/g. 

2.2. Bacterial Strain and Culture Media 

Colonic microbiota was extracted from feces of healthy adult subject, 30 - 50 
years, who did not take antibiotics for at least 3 months and had no history of 
gastrointestinal disease. Feces (10 g) as dissolved in 90 mL of BPW was vortexed 
30 seconds, then it was filtered. The filtrate was distributed into serum bottle 
(contained 100 mL of medium) and flushed with CO2. Pureculture of C. butyri-
cum BCC-B2571 was obtained from Culture Collection of Indonesia Research 
Center for Veterinary Sciences (IVETRI), Indonesia. Eubacterium rectale DSM 
17629 was obtained from DSMZ, Germany. The basal medium for colonic mi-
crobiota and C. butyricum BCC-B2571 consist of (g/L): yeast extract 3, beef 
powder 10, peptone 10, glucose 5, soluble starch 1, NaCl 5, Na-acetate 3 and 
cysteine hydrochloride 0.5. The pH was adjusted to 6.8. The basal medium for 
Eubacterium rectale DSM 17629 contained (g/L): tryptone 5, bacteriological 
peptone 5, yeast extract 10, beef extract 5, glucose 5, Tween 80 1 mL, resazurin 
0.001, CaCl2 0.01, MgSO4 0.02, K2HPO4 0.04, KH2PO4 0.04, NaHCO3 0.4, NaCl 
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0.08, Vitamin K1 0.0002. The pH was adjusted to 7.0. 

2.3. Production of Resistant Starch 

Rice was extracted byalkaline solution [18] as follow: rice flour (500 g) was 
mixed with 0.045 M NaOH 1L, stirred constantly for 1 hour, filtered with 2 lay-
ers of filter cloth. The filtrate was collected, and centrifuged (1500 g, 4˚C, 7 min). 
The supernatant was discarded, the upper sediment (protein) was separated 
from the bottom sediment (starch). Starch fraction was mixed with 0.045 M 1 L 
NaOH, centrifuged, suspended in H2O 250 mL, and neutralized twice with 1 M 
HCl. The starch collected was dried in 40˚C oven for approximately 18 h, milled 
and stored at 4˚C until use. 

Rice starch was processed into RS3 following Kim et al. [14] with modifica-
tions. Starch (50 g) was suspended in 200 mL H2O, boiled (100˚C, 10 min), re-
moved to room temperature. The gel was vacuum sealed in a retort pouch and 
autoclaved at 121˚C, 15 psi for 1 h, and stored at 4˚C for 12 - 14 h, to induce re-
trogradation. Retrograded starch was suspended in 1 L of H2O and blended high 
speed for 2 min. The starch suspension was enzymatic hydrolyzed, by 1 mL 
α-amilase for 3 h at 85˚C, continued with 1 mL of pullulanase for 3 h at 55˚C. 
The hydrolyzed starch was centrifuged (1500 g). The residue was collected and 
stored at 4˚C for 16 - 18 h, suspended in H2O 250 mL and homogenized for 2 
min by homogenizer. The suspension dried with a spray dryer, with inlet tem-
perature 160˚C. 

2.4. Analysis of Rice Starch 

Moisture, ash, and crude fat were analyzed following AOAC [19], whereas the 
amylose contentwere analyzed using colorimetric methods [20]. 

2.5. Determination of Resistant Starch 

RS3 content was analyzed according to Goni et al. [21]. As much as 50 mg of 
RS3 was dispersed in 5 mL KCl-HCl pH 1.5, and incubated with 4400 units of 
pepsin solution at 40˚C in shaker incubator for 1 hour to remove the proteins. 
Tris maleate buffer 0.1 M pH 6.9 (4.5 mL) was added and incubated with amy-
lase (100 units) for 16 h at 37˚C to hydrolyze the digestible starch. Sample was 
then centrifuged (1000 g, 15 min) twice. The supernatant was discarded while 
the residue was moistened with 1.5 mL H2O and dissolved with 1.5 mL KOH 
4M. RS solution was mixed with HCl 2 M and Na-acetate buffer 0.4M pH 4.75, 
then incubated with 100 units of amyloglucosidase at 55˚C for 45 min. The sus-
pension was centrifuged (1000 g, 15 min) and the supernatant was collected. 
Glucose in the supernatant was measured by phenol-sulfuric acid method [22]. 
RS was calculated as glucose × 0.9 and expressed as percent of RS in sample. 

2.6. In Vitro Fermentation 

Growth medium 20 mL, with RS3 (2%), was distributed in the serum bottles 
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flushed with CO2, sealed with a rubber and sterilized at 121˚C 15 min. The me-
dium was inoculated with 1 mL of 24 h pre-cultured bacterial strain (at about 109 
CFU/mL), and incubated under anaerobic condition at 37˚C in water bath. Fer-
mentation was carried out for 12 and 24 h, (three replications). In another in vi-
tro fermentation, glucose (control) was used as the only carbon source (concen-
tration 2%). 

2.7. Gas Production and pH Measurement 

Gas production (mL) was measured by channeling the gas in the serum bottle to 
expand into glass syringe. The pH of the cultures was determined by pH meter. 

2.8. Analysis of Short Chain Fatty Acid 

The fermentation media was centrifuged (3000 g, 10 min), the supernatant was 
filtered with a membrane (0.45 µm) and stored at 4˚C until use. Samples (1 mL) 
was injected into gas chromatography (Agilent Technologist, 7890A GC System) 
equipped with a flame ionization detector (FID) and HP Innowax 19091-136 
column (60 m × 0.250 mm). The carrier gas (H2) was run at speed 1.8 mL/min. 
The oven temperature was maintained at 90˚C for 0.5 min, and then increased to 
110˚C at a rate of 10˚C/min, increased to 170˚C at a rate of 5˚C/min and finally 
increased to 210˚C at a rate of 20˚C/min. Injector and detector temperatures 
were 275˚C. SCFA mixture containing acetate, propionate and butyrate at spe-
cific concentration were used as standard. 

2.9. Statistical Analysis 

All data were expressed as means ± SE from three independent trials. Differenc-
es between the mean values of multiple groups were analyzed by one-way analy-
sis of variance (ANOVA). Duncan test was carried out to compare the data be-
tween treatments, independent t-test. Pearson correlation coefficients, p < 0.05 
was considered a significant different, and SPSS 22 software was applied to ana-
lyze the data. 

3. Results and Discussion 
3.1. Chemical Composition of Rice Starch 

Chemical composition of the extracted rice starch is shown in Table 1. The 
amylose contentwas 34.09% (IR-42) and 28.28% (Inpari-16). Previous report 
pointed that the amylose content of IR-42 and Inpari 16 were 26.70% [23] and 
22.7% [24]. IR-42 was classified as high amylose and Inpari-16 as intermediate 
amylose rice. Our result shows higher amylose content than previously reported; 
this may be due to the genetic make up of the local (West java) rice cultivar. The 
temperature during grain ripening and nitrogen fertilization have also been 
shown to affect the rice amylose contant. In this case the local people seemed to 
apply local wisdom for ripening and fertilization which happen to be the right 
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Table 1. Composition of rice starch. 

Chemical composition IR-42 Inpari-16 

Amylose (%) 34.09 ± 0.17 28.28 ± 0.13 

Moisture (%) 8.28 ± 0.15 6.99 ± 0.25 

Ash (%) 0.15 ± 0.05 0.09 ± 0.001 

Crude Fat (%) 0.29 ± 0.04 0.26 ± 0.02 

 
methods for maintaining high amylose content. The high starch (amylose) con-
tent of rice is considered to have better oppurtunity to be processed into RS3. 

3.2. Resistant Starch Content 

In the production of Resistant starch, therice starch was gelatinized and retro-
graded before hydrolyzed by enzymes. Gelatinization change the granular struc-
ture so that the starch became more accessible to the enzyme action. Storage at 
4˚C induced retrogradation, crystallization and formation of the starch matrix 
which had undergone gelatinization. Alpha-amylase hydrolyzes (1,4)-α-D-  
glycosidic bond of the rice starch and produces linear oligosaccharide, maltose 
and glucose. The short linear oligosaccharide, maltose and glucose were re-
moved during RS process, while the rest of its α-dextrin will be used for RS for-
mation. Pullulanase hydrolyzes (1,6)-α-D-glycosidic of the amylopectin and 
produces linear oligosaccharides, maltose and glucose.Most oligosaccharides are 
able to form RS3 structure [25]. 

RS content of the starch extracted from rice IR-42 was higher than that of In-
pari-16 (Figure 1). Amylase-pullulanase treatment increased the RS content: 
IR-42 (41.13%) and Inpari-16 (37.70%), but with no significant difference be-
tween these two levels. The amylose content of the starch had significant con-
tribution toRS formation.Compared to the extracted starch, with no enzyme 
treatment, enzyme addition increased clearly the RS content. Interaction be-
tween amylose chains could form double helical structure, stabilized by hydro-
gen bonds and become moreresistant to the amylase. Higher amylose content 
could produce RS3 with high RS content. Amylopectin hydrolyzed by pullula-
nase produced linear oligosaccharides and is expected to increase the double 
helical structure. The results showed higher resistant starch content than that 
reported earlier by Purwani et al. [11]. 

3.3. Effect of Resistant Starch on pH and Gas during In Vitro  
Fermentation 

The effect of resistant starch on pHs during in vitro fermentation by 12 and 24 
his shown in Figure 2. The pH values decreaseddown to 4 to 4.5 in all treat-
ments, compared with initial medium, for each microbe. However, pH after 12 
and 24 hwas not significantly different (p < 0.05). In many cases of fermentation 
using colonic bacteria, t appeared that decreasing pHs occured during initial 
fermentation time (the first 12 hours). Earlier report by Purwani et al. [11]  

https://doi.org/10.4236/abb.2018.92008


D. J. C. Hutabarat et al. 
 

 

DOI: 10.4236/abb.2018.92008 96 Advances in Bioscience and Biotechnology 
 

 
Figure 1. Resistant starch content of native starch and RS3 of rice. 

 

 
Figure 2. Profile of pH in the presence of colonic microbiota, C. butyricum BCC-B2571 or E. rectale DSM 17629 in different me-
dia after (a) 12 h and (b) 24 h fermentation. Mean values above bar followed by the different letters represent significant different 
(p < 0.05). 

 
showed that fermentation of RS rice (1%) treated by amylase and pullulanase, 
resulted in pH 4.5 after 48 h fermentation when C. butyricum BCC-B2571 or E. 
rectale DSM 17629 were used. Acetate, propionate, and butyrate suppressed both 
growth and toxin production by C. difficile at concentrations as low as 10 mM, 
and these effects are pH dependent [26] [27]. 

The effect of resistant starch on gas produced after 12 and 24 h fermentation 
is shown in Figure 3. Gas production was different after 12 and 24 h fermenta-
tion, except when E. rectale 17629 was used. Purwani et al. [11] reported also 
that RS rice at 1%, produced 8.70 mL gas by C. butyricum BCC-B2571 and 10.60 
mL gas by E. rectale DSM 17629 after 48 h fermentation. 
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Figure 3. Gas profilein the presence of colonic microbiota, C. butyricum BCC-B2571 or E. rectale DSM 17629 in different media 
after (a) 12 h and (b) 24 h fermentation. Mean values above bar followed by the different letters represent significant different (p < 
0.05). 

3.4. Production of Short Chain Fatty Acids during In Vitro  
Fermentation 

SCFA profile resulted from 12 and 24 h fermentation by different microbes is 
shown in Figure 4. The main products after 12 h fermentation of RS3 for each 
microbe were acetate (18.68 to 82.47 mM), propionate (1.95 to 7.45 mM) and 
butyrate (0.89 to 6.78 mM). Molar (mM) of acetate:propionate:butyrate after 12 
h fermentation by colonic microbiota were 82.47:7.45:6.44 in medium supple-
mented with RS3 IR-42 and 32.04:2.45:0.89 in medium supplemented with RS3 
Inpari-16. Molar (mM) of acetate:propionate:butyrateafter 12 h fermentation by 
C. butyricum BCC-B2571 were 74.93:6.10:6.78 in medium supplemented with 
RS3 IR-42 and 19.18:1.95:2.51 in medium supplemented with RS3 Inpari-16. 
Molar (mM) of acetate:propionate:butyrate after 12h fermentation by E. rectale 
DSM 17629, were 21.62:5.33:5.37 in medium supplemented with RS3 IR-42 and 
18.68:5.67:5.65 in medium supplemented with RS3 Inpari-16. 

The main product after 24 h fermentation of RS3 for each microbe was acetate 
(18.09 to 63.28 mM), followed by butyrate (4.80 to 6.84 mM) and propionate 
(3.45 to 6.27 mM). Molar (mM) of acetate:propionate:butyric after 24 h fermen-
tation by colonic microbiota were 63.28:6.27:6.84 in medium supplemented with 
RS3 IR-42 and 48.64:3.45:4.86 in medium supplemented with RS3 Inpari-16. 
Molar (mM) of acetate:propionate:butyrate after 24 h fermentation by C. buty-
ricum BCC-B2571 were 59.45:4.53:6.39 in medium supplemented with RS3 
IR-42 and 35.06:3.98:4.80 in medium supplemented with RS3 Inpari-16. Molar 
(mM) of acetate:propionate:butyrate after 24 h fermentation by E. rectale DSM 
17629 were 28.27:5.74:6.48 in medium supplemented with RS3 IR-42 and 
18.09:4.97:3.59 in medium supplemented with RS3 Inpari-16. 

Our study showed that after 12 h fermentation, C. butyricum BCC B2571 
produced higher butyrate (p < 0.05) in medium supplemented with RS3 IR42 
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Figure 4. SCFA profile in the presence of colonic microbiota, C. butyricum BCC-B2571 or E. rectale DSM 17629 in different me-
dium supplemented after 12 or 24 h fermentation. Mean values above bar followed by the different letters represent significant 
different (p < 0.05). 

 
(6.78 mM) than in medium supplemented with RS3 Inpari-16 (2.51 mM). 
Meanwhile after 24 hfermentation, the colonic microbiota produced butyrate 
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higher (p < 0.05) in medium supplemented with RS3 IR42 (6.84 mM) than in 
medium supplemented with RS3 Inpari-16 (4.86 mM). 

Table 2 shows SCFA profile after 12 and 24 h fermentation of different RS3. 
In medium supplemented with RS3 IR-42, acetate production by colonic micro-
biota, C. butyricum BCC-B2571 or E. rectale DSM 17629 was different. Molar of 
acetate produced by colonic microbiota and C. butyricum BCC-B2571 were 
higher after 12 than 24 h fermentation (p < 0.05). Meanwhile E. rectale DSM 
17629 produced higher acetateafter 24 than 12 h fermentation. RS3 IR-42 fer-
mented by C. butyricum BCC-B2571 produced different propionate after 12 and 
24 h fermentation, while higher propionate was produced after 12 hfermentation. 

In medium supplemented with RS Inapri-16, production of acetate, propio-
nate, and butyrate by colonic microbiota and C. butyricum BCC-B2571 showed 
different molarity after 12 and 24 h fermentation. RS3 Inpari-16 fermented by 
colonic microbiota and C. butyricum BCC B2571, produced higher acetate, pro-
pionate, and butyrate significantly after 24 h fermentation compared with at 12 h 
fermentation. 

The result confirmed that proportion and content of SCFA was dependent on 
the bacterial strain used and type of the resistant starch (RS content). The 

 
Table 2. Profile SCFA by different resistant starch after 12 and 24 h fermentationa. 

Resistant 
starch 

SCFA after  
fermentation 

Colonic  
microbiota 

C. butyricum BCC 
B2571 

E. rectale DSM 
17629 

RS3 IR-42 

Acetate (mM) 12 h 82.47 74.93 21.62 

Acetate (mM) 24 h 63.28 59.45 28.27 

p-value 0.037 0.042 0.010 

Propionate (mM) 12 h 6.27 6.10 5.33 

Propionate (mM) 24 h 7.45 4.53 5.74 

p-value  0.043  

Butyrate (mM) 12 h 6.44 6.68 5.37 

Butyrate (mM) 24 h 6.84 6.39 6.48 

p-value    

RS3 Inpari-16 

Acetate (mM) 12 h 32.04 19.18 18.68 

Acetate (mM) 24 h 48.64 35.06 18.09 

p-value 0.000 0.025  

Propionate (mM) 12 h 2.45 1.95 5.67 

Propionate (mM) 24 h 3.45 3.98 4.97 

p-value 0.000 0.000  

Butyrate (mM) 12 h 0.89 2.51 5.65 

Butyrate (mM) 24 h 4.86 4.80 5.38 

p-value 0.001 0.000  

aOnly significant independent t-test reported (p < 0.05). 
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butyrate produced in our study was higher than previously reported (produced 
by colonic microbiota) [28]. Production of SCFA by microbes in the medium 
supplemented with RS3 was in general higher than those produced in the me-
dium supplemented with glucose (as the only carbon source), which indicates 
that RS3 is more effective for SCFA production. Our study also showed that 
SCFA produced by colonic microbiota in RS3 medium was higher than in the 
medium supplemented with apple juice extracts [29]. Higher concentration of 
butyrate was produced after 48 h fermentation of RS3 rice by C. butyricum BCC 
B2571 and E. rectale DSM 17629, but lower acetate when C. butyricum BCC 
B2571 was used [11]. Butyrate production by colonic microbiota and C. butyri-
cum BCC B2571 was increased after 24 h fermentation in medium supplemented 
with RS3 Inpari-16. 

In our study, accumulation of acetate implied that the butyrate was produced 
via butyryl-CoA transferase. Miller and Wolin [30] reported the pathway of ace-
tate, propionate, and butyrate synthesis by human colonic microbiota. At the fi-
nal step of butyrate synthesis, there are two alternatives pathway, butyrate kinase 
pathway and a butyryl-CoA transferase. Butyryl-CoA transferase pathway is a 
dominant route for human colonic microbiota for butyrate synthesis [31]. Dun-
can and Flint [32] reported that during in vitro study, E. rectale consumed large 
amount of acetate to produce butyrate. 

The capability of RS3 rice as prebiotic was supported by the fact that RS3 was 
metabolized by the tested microbes and in the production of SCFA. Resistant 
starch improve metabolic activity of the gut microbiota by increasing the pro-
duction of SCFA and, thus supported the growth of beneficial species in the 
healthy individual [33] and in patients with irritable bowel syndrome or those 
receiving enteral nutrition [34] [35]. Acetate reduces the appetite by changing 
the expression profiles of appetite regulatory neuropeptides in the hypothalamus 
through activation of TCA cycle [36]. Acetate (2 - 10 mM) has been found cor-
related well with the ability of bifidobacteria to inhibit enteropathogens [8]. In 
addition, it has been shown that acetate reduces lipopolysaccharide-stimulated 
tumor necrosis factor (TNF), interleukin (IL)-6 and nuclear factor (NF)-κB level 
while boosting peripheral blood antibody production in various different tissues 
[37]. 

Propionate reduces food intake and increases satiety viaaugmentation of the 
satiety hormone leptin, and through activation of GPCR [38] [39]. Propionate 
reduces cholesterol synthesis rate by decreasing the enzyme activity of hepatic 
HMG-CoA synthase (HMGCS) and HMG-CoA reductase (HMGCR) [40] [41]. 
Also, propionate reduces human colon cancer cell growth and differentiation 
viahyperacetylation of histone proteins and stimulation of apoptosis [42] [43]. In 
addition, propionate also inhibits the production of proinflammatory cytokines 
(e.g., TNF-α, NF-κB) in multiple tissues [44] [45]. 

Butyrate is an energy source of the intestinal epithelial cells (growth and dif-
ferentiation) and can increase mucin production which may result in changes on 
bacterial adhesion [46] and improve tight-junctions integrity [47]. Compared to 
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acetate and propionate, butyrate exhibits strong anti-inflammatory properties, 
and this effect is likely mediated by inhibition of TNF-α production, NF-κB ac-
tivation, and IL-8, -10, -12 expression in immune and colonic epithelial cells [48] 
[49]. Fu et al. [50] reported through differentiation maker (cathepsin C) study, 
which showed that butyrate, propionate, and acetate could inhibit proliferation 
and motility of a well-differentiated human colonic cancer cell line. Purwani et 
al. [51] reported that SCFA produced by fermentation of C. butyricum BCC 
B2571 (butyrate of 2.6 - 5.2 mM) or E. rectale DSM 17629 (butyrate of 3.6 - 7.2 
mM) inhibited proliferation and induce apoptosis of human colorectal cancer 
cell line HCT-116. Butyrate (0.1 - 10 mM) inhibited proliferation and induce 
apoptosis of Caco2 [52] [53]. In addition, butyrate and propionate have also 
been reported to induce differentiation of T-regulatory cells, control intestinal 
inflammation; and these effects seem to be mediated via inhibition of histone 
deacetylation [54] [55]. Control of intestinal inflammation shows beneficial 
health of colon in terms of gut barrier maintenance, reducing the risk of in-
flammatory bowel disease or CRC. 

3.5. Correlation between Microbes and SCFA Concentration 

Significant positive correlations were observed between concentrations of SCFA 
(acetate, propionate, and butyrate) and colonic microbiota or C. butyricum 
BCC-B2571 after 12 h fermentation (Table 3). RS fermentation by colonic mi-
crobiota indicated significant positive correlation with propionate concentration 
after 24 h fermentation. Fermentation of RS3 by C. butyricum BCC-B2571 indi-
cated significant positive correlation with propionate and butyrate concentration 
after 24 h fermentation. In our study, fermentation by E. rectale DSM 17629 
showed one significant positive correlation with acetate after 24 h fermentation. 

4. Conclusion 

Treatment with amilase-pullulanase increased RS content of IR-42 from 19% to 
41% and Inpari-16 from 10% to 37%. Fermentation of RS3 IR-42 and Inpari-16 
by colonic microbiota, C. butyricum BCC-B2571, and E. rectale DSM 17629, 
produced SCFA with different molar ratio. Time fermentation affected molar  
 
Table 3. Statistical correlations (Person coefficients) for RS in different microbes versus 
SCFA concentrationsa. 

Microbe 
12 h 24 h 

Acetate Propionate Butyrate Acetate Propionate Butyrate 

Colonic micro-
biota 

0.991b 0.966b 0.972  0.986  

C. butyricum 
BCC-B2571 

0.975 0.991 0.991 0.976  0.912 

E. rectale DSM 
17629 

   0.975   

aOnly significant correlations reported (p < 0.05), bp < 0.01. 
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ratio of SCFA production. Fermentation of C. butyricum BCC-B2571 in medium 
supplemented with RS3 IR42 produced molar of acetate:propionate:butyrate, 
74.93 mM:6.10 mM:6.78 mM after 12 h fermentation. Fermentation of colonic 
microbiota in medium supplemented with RS3 IR42 produced molar of ace-
tate:propionate:butyrate, 63.28 mM:6.27 mM:6.84 mM after 24 h fermentation. 
Both SCFA profile produced high butyrate. Our study showed that RS3 IR-42 
had potential in the production of butyrate. 
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