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ABSTRACT 
Deoxyribonucleic acid (DNA) or oligonucleotides, can 
be modified in several ways as chemical degradation 
by electrophilic reaction, attack of radicals, hydrolyt-
ic deamination or oxidative damage caused by ioniz-
ing radiation. This work discussed these degradation 
mechanisms, determining the effects on these biomo-
lecules. The actual knowledge about DNA damages 
only permits partial enzymatic repair treatments. 
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1. INTRODUCTION 
Biological markers (biomarkers) are complex molecular 
fossils from biomolecules in living organisms. They are 
generally resistant to weather, the biodegradation, eva-
poration and other biological processes. As commonly 
preserved in rocks, they can be used by geologists, geo-
chemists, archaeologists, evolutionist biologist, etc. for 
information on organic matter in source rocks, the pres-
ence of oil, environmental conditions during sedimenta-
tion (diagenetic process), the thermal maturity expe-
rienced by the oil and/or rock (catagenetic process), the 
degree of biodegradation, some aspects of mineralogy of 
the source rock (lithology), the age of fossils and charac-
terization of biomarkers. 

Biological markers can be DNA (DeoxyRibonucleic 
Acid) or oligonucleotides, which are stretches of DNA 
molecules of simple fixed-length string. 

The continuous advances in DNA sequencing tech-
niques allow faster and complete studies of sequenced 

DNA for fields as the evolutionist biology provide indi-
rect evidence on the comparison of DNA sequences from 
living organisms, of the historical processes that have 
formed them over long periods of time. The study of 
DNA from fossils organisms offers a partial way out to 
this problem, because many technical pitfalls need to be 
innovated to allow the reconstruction and/or study of the 
molecules. By example, DNA from fossils can form 
cross-links among themselves or with other molecules to 
the passage of time, hindering the use of techniques such 
as PCR for study [1,2]. 

Therefore, this work discussed some degradation me-
chanisms of nucleic acids, oligonucleotides and nucleo-
tides, determining the effects on these biomolecules by 
agents of degradation and finally exposed the major tech- 
niques available for the retrieval of ancient and damaged 
DNA. 

2. CHEMICAL DEGRADATION OF DNA 
There are some functional groups or chemical structures 
that can modify the DNA. These molecules possess suf-
ficient reactivity to make changes and break covalent 
bonds within DNA. Almost all the DNA reactions fall 
into just two general categories: 1) the reaction of a DNA 
nucleophile with an electrophile or 2) the reaction of a 
DNA pi bond or c-h bond with a radical [3-6]. 

2.1. Electrophilic Degradation Reactions 
Potentially, all of the heterocyclic bases in DNA, could 
to act as nucleophiles in reaction with electrophiles. as is 
expected, access to some sites is limited in double- 
stranded DNA relative to single-stranded DNA [7,8], but, 
reactions are not completely precluded even at locations 
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on Watson-Crick hydrogen bonding surfaces of the bases 
that reside near the helical axis of the duplex. The factors 
that determine the atom site selectivity for a given DNA- 
alkylating agent are complex [7-11]. A recent detailed 
study of alkylation by diazonium ions led to the conclu-
sion that atom site selectivities seen in duplex dna do not 
reflect intrinsic nucleophilicities of the heteroatoms in 
the nucleobases. Rather, placement of the nucleobases 
into the environment of the double helix substantially 
alters the nucleophilicity of base heteroatoms. factors 
that alter the nucleophilicities of various heteroatoms in 
the dna bases, when placed within the context of double 
helix, include proximity of the polyanionic sugar-phos- 
phate backbone, lower dielectric constants in the dna 
grooves relative to bulk water, and interaction of the in-
herent dipoles of the nucleobases with the electrostatic 
environment of the double helix (e.g., charges of the 
backbone and neighboring bases) [11]. 

2.2. Reactions of Radicals with the Heterocyclic 
Bases 

Radicals react with bases frequently by addition to the pi 
bonds in the heterocyclic nucleobases or by hydrogen 
atom substraction. These reactivity has been extensively 
studied in the context of hydroxyl radical (HO•), which 
is generated by radiolysis of water. When DNA is ex-
posed to the hydroxyl radical, approximately 80% of the 
reactions occur at the bases [12-14]. Many base damage 
products arising from the reaction hydroxyl radical with 
DNA have been characterized [13,15-19]. Radical attack 
yields nucleobase radical adducts that must undergo ei-
ther oxidation or reduction to yield a stable final product. 
The cellular oxidant in these reactions may be molecular 
oxygen or high-valent transition metal ions (e.g., Fe3+), 
while the reductant may be either thiols, superoxide rad-
ical, or low-valent transition metal ions (e.g., Fe2+). In 
many cases, the base remains largely intact and the se-
quence of chemical events can be readily inferred. In 
some other cases, more extensive base decomposition 
occurs. 

2.3. Reactivity in Archaeological Deposits 
Ancient DNA contains only a small fraction of speci-
mens endogenous [20], the reason for this is damage to 
the DNA that accrues over. Mainly two kinds of modifi-
cation are likely to affect dna in an archaeological envi-
ronment. First, hydrolytic reactivity will result in deami-
nation of bases and in depurination and depyrimidination 
[21]. In second place, oxidative damage, caused by the 
direct interaction of ionizing radiation with the DNA, as 
well as mediated by free radicals created from water 
molecules by ionizing radiation, will result in modified 
bases [21,22]. Other mechanisms, for example alkylation 

or uv irradiation, are less likely to affect buried remains. 
Ancient DNA is degraded to a small average size con-
taining abasic sites and oxidation products of pyrimi-
dines [23]. Gas chromatography/mass spectrometry (GC/ 
MS) is particularly suited to identify and quantify mod-
ifications in DNA [24]. 

3. RETRIEVAL OF ANCIENT AND  
DAMAGED DNA 

The formulation of theories and deductions about the 
evolution of species are inferred from studies of genetic 
diversity in contemporary populations. The retrieval of 
ancient DNA from archaeological remains holds the 
promise to add a new tool to such studies, with the in-
vention of PCR [25,26], as mentioned ancient DNA con-
tains only a small part of sequences that can be amplified 
by the polymerase chain reaction (PCR) [20]. The PCR is 
the main technique to retrieve ancient DNA sequences. 

It became possible to study ancient DNA sequences 
[23]. Contributing mainly to areas as phylogenetic rela-
tionships of extinct animals [20,27,28], whereas results 
in other areas have remained controversial [21,29] or 
difficult to authenticate. This is the situation, for example, 
for the retrieval of DNA sequences from ancient human 
remains [30]. 

Biochemical methods can identify ancient DNA alte-
rations and inadequate sequencing [31]. 

There are evidence that inter-strand crosslinks, prevent 
amplification, may accrue more quickly post-mortem 
than the single-stranded nicks that are largely responsible 
for fragmentation. For this reason, DNA sequences may 
be present in fossil remains long after negative amplifi-
cation results are obtained [32,33]. 

Some methods have been used to revert damages of 
ancient dna and improve the amplifiable dna templates 
and sequence reliability. As example, PFU and TAQ hifi, 
high fidelity polymerase enzymes leading a sequencing 
with minimal errors [34,35].  

Similarly, uracil-n-glycosylase (UNG) takes out dea-
mination products of cytosine and is an important means 
to determine the origins of sequence variation [31-36]. n- 
phenacylthiazolium bromide (PTB) appears to break 
intermolecular cross-links caused by advanced glycosy-
lation end products, although the exact mode of opera-
tion remains unclear [37]. 

The actual knowledge about DNA damages only per-
mit partial enzymatic repair treatments for DNA [38]. 

4. CONCLUSIONS 
Nucleic acids, oligonucleotides and nucleotides are mainly 
damaged by mechanisms as chemical degradation by 
electrophilic reaction, attack of radicals, hydrolytic dea-
mination or oxidative damage caused by ionizing radia-
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tion. 
With the actual knowledge about DNA, damages are 

the only possible partial enzymatic repair treatments. 
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