

Study on Fluorescence Intensity Determination of Rare Earth Europium Complexes UV-Photochromic Inks

Juan Lan¹, Cheng Sun², Xiaoxiu Hao³, Liqiang Huang⁴, Shiying Song⁵

¹Tianjin University of Science and Technology TUST Tianjin, China ²Tianjin University of Science and Technology and Tianjin Professional University TUST and TPU Tianjin, China ³Tianjin Professional University ⁴Tianjin University of Science and Technology TUST Tianjin, China ⁵Tianjin University of Science and Technology TUST Email: lanjuan008@126.com

Abstract: The paper discussed the preparation of rare earth europium complexes ultraviolet rays (UV) photochromic ink and the influences of factors, such as europium complexes using a rare earth ternary complex of Eu ion with 3-benzoylbenzoic acid and phenathrolinephen $[Eu(BA)_3Phen]$ content upon printing ink formula. In the experiment, we utilized fluorescence spectrophotometer to make quantitative determinations of the relative fluorescence intensity of rare earth europium complexes and different proportions of UV photochromic ink samples. Besides, we made further analysis and studied their relative fluorescence intensity and fluorescence spectrum. Printing ink samples were made in the offset printability tester with the pressure of 200N, 500N, or 800N. The results showed that: printing pressure had a little influence on the fluorescence intensity of samples, for instance, with the 500N pressure, the relative fluorescence intensity became enhanced. In this paper, we studied the relative fluorescence intensity for different proportions of photochromic ink. It demonstrated that through the quantitative determination of the relative fluorescence intensity of samples, the best content ranges for adding rare earth europium complexes was between 8.5% and 9.5%. From the fluorescence spectrum, we got conclusion that photochromic ink reached the crest of 616.8nm.

Keywords: rare earth europium complexes; dispersed system; granularity; the relative fluorescence intensity

1. Introduction

In recent years, photochromic materials research has been constantly developed, and people pay more and more attention to the rare-earth ions in fluorescent performance. At present, rare earth europium complexes has been applied in China, and prepared UV-curing of rare red fluorescent security inks^[1]. We prepared rare earth europium complexes UV-photochromic inks. Under UV radiation, $Eu(BA)_3$ Phen can show red fluorescence, and have excellent performance on the absorption of UV and reflection of red fluorescence. Through the quantitative measurements of the relative fluorescence intensity of photochromic ink, illumination performance was better researched, and played a significant role on quantification analysis.

2. Preparation of Eu(BA)₃Phen dispersed system and photochromic ink

According to GB/T 17001.1-1997, anti-forgery ink part 1: technical conditions of UV fluorescence excitation ink (hectograph, typography), requiring the granularity of photochromic materials of Eu(BA)₃Phen to be less than 15μ m^[2], then refining Eu(BA)₃Phen to solve the cohesion problem when joined in the ink, and get photochromic

ink.

2.1 Experiments

Instruments:

D8401 ZH - an electric mixer, Laser particle size analyzer S3500 (origin: USA), Outsourcing glass beads (diameter 6mm), 50ml beaker, AB2042S electronic analytical balance.

Materials:

soybean oil, Eu(BA)₃Phen, sodium polyacrylate, white light quick-drying offset printing ink (Outsourcing). Methods :

(1) the scattered distribution system: compounding europium- benzoic acid- phenanthroline and soybean oil (mass ratio of 1:1) in the beaker, then adding 2‰ dispersant of sodium polyacrylate and a few glass beads, stirring 24 hours, we got lanthanide europium complexes dispersion and measured the particle size distribution. (2)Rare earth europium complexes UV-photochromic ink: put amount of dispersion into white offset printing ink and stir the fluid, then produce the UV-photochromic ink, the share of Eu(BA)₃Phen are 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16% respectively.

2.2 The measurement of the particle distribution of $Eu(BA)_3$ Phen dispersed system

The national standard was achieved and the cohesion problem when mixing with ink was made out by Eu(BA)₃Phen. Determination of particle size distribution as follows: take a little of dispersion and diluted with proper ethyl acetate. The curve of size distribution, which determined by the laser particle size analyzer S3500, was shown in fig.1.

Figure 1. Size distribution curve of lanthanide europium complexes dispersion

Table 1. Size distribution of dispersion

Dia	Vol %	Width
0.4090	100.00	1.3930

Annotate: Dia shows grain size of the peak, the percentage composition within the scope of width is $\mathrm{Vol}\%$

As seen from fig.1 and tab.1, the particle size almost distributed within $10\mu m$ in only one area uniformly, and satisfied the standards.

3. Determination of the relative fluorescence intensity

The relative fluorescence was measured by fluorescence spectrophotometer quantitative measure method, which can show photoluminescence property more specific and directly. The excitation wavelength and emission wavelength of the Eu(BA)₃Phen must be determined first, be-

Proceedings of the 17th IAPRI World Conference on Packaging

cause they were the basic data for quantitative determination of relative fluorescence intensity.

3.1 Instruments and materials

Fluorescence spectrophotometer RF-5301 was purchased from Dao Jin Company, IGT2C1 offset printing was made in Holland, coated paper $80g/m^2$, paper size was 45mm in width and 270mm in length.

3.2 Experimental methods

3.2.1 Confirmation of the excitation wavelength and the emission wavelength of $Eu(BA)_3Phen^{[3\sim 6]}$

(1) Confirmation of the excitation wavelength of Eu(BA)₃Phen

Wavelength 334nm was basic excitation wavelength to detect the emission wavelength of $Eu(BA)_3$ Phen. The emission wavelength was found at spectrum peak 616nm, which was the only maximum spectrum peaks.

Fluorescence emission wavelength parameter was set to 616nm, the scanning range was 220 to400nm, and its excitation wavelength was gained at 350nm.

(2) Confirmation of the best emission wavelength

Emission wavelength was adjusted by excitation wavelength 350nm. The instruments parameter was set as follows: excitation wavelength was 350nm, the scanning range was 500 to 700nm, low sensitivity, maximum spectrum peaks was 616.8 nm, namely the best emission wavelength was selected at 616.8 nm.

3.2.2 Selection of printing pressure

The samples were printed using photochromic ink, the printing pressure were 200N, 500N, and 800N. Excitation and emission wavelength were 350nm and 616.8nm. The slit was EX: 5.0nm and EM: 1.5nm. The results were shown in tab. 2.

Mass fraction(%)	Printing pressure(N) -	Relative fluorescence intensity					
		1	2	3	4	5	
4	200	64.937	70.89	71.417	66.442	69.539	
	500	71.646	68.416	67.302	68.288	71.688	
	800	73.828	77.091	81.606	73.047	70.281	
6	200	94.397	98.359	104.217	98.269	98.088	
	500	110.259	105.029	108.77	107.942	104.478	
	800	108.651	108.089	108.906	115.67	110.119	

Table 2. Relative fluorescence intensity of samples under different printing pressure

As seen from Tab.2, the printing pressure had unobvious influence on the relative fluorescence intensity of photochromic ink, so the printing pressure was defined at 500N, and the effect of printing was better. **3.3 Results and Discussion** 3.3.1 Selection of samples proportion $[6 \sim 10]$

The relative fluorescence intensity of samples with different contents of $Eu(BA)_3$ Phen were measured, data were given in tab.

Table 3. Relative fluorescence intensity of samples with different proportions

Mass fraction(%) -	Relative fluorescence intensity					
	1	2	3	4	5	Average
4	101.283	103.888	104.229	96.648	101.572	101.524

Proceedings of the 17th IAPRI World Conference on Packaging

6	129.049	130.647	133.182	123.306	113.746	125.986
8	158.759	164.074	166.482	166.447	163.089	163.7702
10	180.381	185.647	192.984	181.745	185.000	185.1514
12	254.692	272.933	266.62	243.128	268.563	261.1872
14	316.467	311.813	308.314	304.578	314.094	311.0532
16	356.545	350.398	358.643	349.532	364.718	355.9672

As seen from Tab.3, the increasing tendency of the relative fluorescence intensity became weaker obviously, when Eu(BA)₃Phen mass fraction was between 8% and 10%. But considering minimizing the photochromic material quantities and controlling costs, best ratio of Eu(BA)₃Phen and white offset printing ink should be found. Several smaller interval points were identified in the quality score of 7% to 10%, they were 7%, 7.5%, 8%,

8.5%, 9%, 9.5% and 10%. Then relative fluorescence intensity was tested following the process above. 3.3.2 Confirmation the optimum ratios of $Eu(BA)_3$ Phen and UV-photochromic ink According to the same measure method, the relative fluorescence intensity of samples with different contents of $Eu(BA)_3$ Phen were tested, data were given in tab.4.

Table 4. Relative	fluorescence	intensity	of samples	with	different proportions
-------------------	--------------	-----------	------------	------	-----------------------

Mass fraction	Relative fluorescence intensity						
(%)	1	2	3	4	5	Average	
7.0	125.984	127.106	129.976	127.926	130.051	128.2086	
7.5	130.775	132.206	133.229	140.321	138.914	135.089	
8.0	146.093	147.696	151.588	152.677	156.309	150.8726	
8.5	169.829	165.766	168.704	171.153	172.011	169.4926	
9.0	167.142	166.445	170.361	170.923	171.439	169.262	
9.5	172.355	178.095	177.342	177.034	180.992	177.1636	
10.0	190.368	196.83	198.416	199.672	193.816	195.8204	

As seen from Figure 2, curve tendency generally rose, but in the same gap, the increase degree was different, in 8.5%, the increasing tendency of the relative fluorescence intensity became weaker suddenly. In interval $8.5 \sim 9.5\%$, increasing tend of relative fluorescence intensity became smooth with the increase of Eu(BA)₃Phen content, relative fluorescence intensity of photochromic ink didn't increase obviously with Eu(BA)₃Phen content. Considering to reduce costs and make good use of photolumines-

cence, the optimal ratio range was $8.5 \sim 9.5\%$, Eu(BA)₃Phen UV- photochromic ink could demonstrate excellent photoluminescence properties.

4. Conclusions

(1)Experiments proved that relative fluorescence intensity of samples had a little influence on printing pressure, and the better printing pressure was 500N.

(2)The results showed that the optimal ratio range of $Eu(BA)_3$ Phen content was $8.5 \sim 9.5\%$.

References

- [1] Zheng-Xiang Wang, Jun Hu, Wang'en Shu. A kind of photo-curing rare earth red-emitting security ink and its preparation methods. China Patent:1560148A,2004-02-17.
- [2] GB T 17001.1-1997 Anti-counterfeiting ink Part 1:Technical requirement of ultraviolet fluorescent ink.
- [3] Xiao-Xiu Hao, Shu-Hui Yang, Cheng Sun. "Fluorescent intensity determination technology for anti-counterfeit packaging Paper", in Packing engineering, Vol.28, PP24-32, 2007.
- [4] Hong Yang, Li-Hua Cai. Studies on the spectra of Rare Earth Dinuclear Complexes with o-Phenanthroline Hydrate, in Chinese Journal of Spectroscopy Laboratory, Vol.20, PP18-20, 2003.
- [5] Lian-Jun Wang. Synthesis, characterization and fluorescent properties of rare earth europium complex, in China plastics, Vol.20,No.11, PP31-35, 2006.
- [6] Bo Sun, Ying Zhao, Duan-Fu Xu. Spectral analysis of rare earth complexes, in Spectroscopy and Spectral Analysis, Vol.17, No.2, PP227-228, 1997.
- [7] Mei-Na Liu. The study of conductive mechanicism and

339

Proceedings of the 17th IAPRI World Conference on Packaging

performance in carbon & copper oil, XI'AN: XI'AN university of technology Package, 2002.

- Hoefdroad H E. The charge-transfer absorption band of Eu3 + in oxides, in J. Solid. State. Chem. , Vol.15, PP175-177, 1997. Kido J, Nagai K, Okamoto Y, et al. Electroluminescence frompolysilane film doped with europium complex, in Chem [8]
- [9]

Lett, PP1267-1270, 1991. [10] Hu W P , Matsumura M,Wang M Z, et al. Efficient red europium complex, in Appl Phys Lett, Vol.77, PP4271-4273, 2000.