[1]
|
Spak, D.A., Plaxco, J.S., Santiago, L., Dryden, M.J. and Dogan, B.E. (2017) BI-RADS? Fifth Edition: A Summary of Changes. Diagnostic and Interventional Imaging, 98, 179-190. https://doi.org/10.1016/j.diii.2017.01.001
|
[2]
|
Zhang, L., Han, L.X., Cao, H.X., Du, Y.Q., Chen, W. and Wang, J. (2017) The Value of 3.0 T Magnetic Resonance Diffusion Weighted Imaging and VIBRANT Dynamic Enhancement in the Differential Diagnosis of Breast Adenosis and Breast Cancer. Journal of Clinical Radiology, 36, 342-346.
|
[3]
|
Shao, G.L., Fan, L.Y., Zhang, J., Dai, G. and Xie, T.M. (2017) Association of DW/DCE-MRI Features with Prognostic Factors in Breast Cancer. The International Journal of Biological Markers, 32, e118-e125.
https://doi.org/10.5301/jbm.5000230
|
[4]
|
Zhang, L., Tang, M., Min, Z.Q., Lu, J., Lei, X.Y. and Zhang, X.L. (2016) Accuracy of Combined Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Diffusion-Weighted Imaging for Breast Cancer Detection: A Meta-Analysis. Acta Radiologica (Stockholm, Sweden: 1987), 57, 651-660.
https://doi.org/10.1177/0284185115597265
|
[5]
|
McDonald, E.S., Hammersley, J.A., Chou Shinn-Huey, S., Habib, R., Scheel, J.R., Lee, C.I., Liu, C.-L., Lehman, C.D. and Partridge, S.C. (2016) Performance of DWI as a Rapid Unenhanced Technique for Detecting Mammographically Occult Breast Cancer in Elevated-Risk Women with Dense Breasts. American Journal of Roentgenology, 207, 205-216. https://doi.org/10.2214/AJR.15.15873
|
[6]
|
Wan, C.W.S., Lee, C.Y., Lui, C.Y., Fong, C.Y. and Lau, K.C.H. (2016) Apparent Diffusion Coefficient in Differentiation between Malignant and Benign Breast Masses: Does Size Matter. Clinical Radiology, 71, 170-177.
https://doi.org/10.1016/j.crad.2015.11.006
|
[7]
|
Rabasco, P., Caivano, R., Simeon, V., Dinardo, G., Lotumolo, A., Gioioso, M., Villonio, A., Iannelli, G., D’Antuono, F., Zandolino, A., Macarini, L., Guglielmi, G. and Cammarota, A. (2017) Can Diffusion-Weighted Imaging and Related Apparent Diffusion Coefficient Be a Prognostic Value in Women with Breast Cancer. Cancer Investigation, 35, 92-99. https://doi.org/10.1080/07357907.2016.1267740
|
[8]
|
Wang, S.H., Song, X.D., Zhao, Y.S., et al. (2018) Diagnostic Value of MR-DWI for Axillary Lymph Node Metastasis of Breast Cancer. Hebei Medical Journal, 40, 2127-2130.
|
[9]
|
Luo, N.B., Suo, K., Huang, X.Y., Jin, G.Q., Liu, L.D. and Zhao, Y. (2018) Correlation between ADC Values of MR Diffusion-Weighted Imaging and Ki-67 Expression before and after Neoadjuvant Chemotherapy for Breast Cancer. Journal of Clinical Radiology, 37, 922-925.
|
[10]
|
Dai, H.Y., Liu, G.R., Yan, S.Z., Huang, C.Y. and Chen, S.S. (2015) The Value of Different b-Value MR Diffusion-Weighted Imaging in Differential Diagnosis of Benign and Malignant Breast Tumors. Magnetic Resonance Imaging, 6, 829-832.
|
[11]
|
Dijkstra, H., Dorrius, M.D., Wielema, M., et al. (2016) Senti-Automated Quantitative Intravoxel Incoherent Motion Analysis and Its Implementation in Breast Diffusion-Weighted Imaging. Journal of Magnetic Resonance Imaging, 43, 1122-1131.
https://doi.org/10.1002/jmri.25086
|
[12]
|
Ma, D.J., Lu, F., Zou, X.X., Zhang, H., Li, Y.Y., Zhang, L., Chen, L., Qin, D.J. and Wang, B. (2017) Intravoxel Incoherent Motion Diffusion-Weighted Imaging as an Adjunct to Dynamic Contrast-Enhanced MRI to Improve Accuracy of the Differential Diagnosis of Benign and Malignant Breast Lesions. Magnetic Resonance Imaging, 36, 175-179. https://doi.org/10.1016/j.mri.2016.10.005
|
[13]
|
Liu, C.L., Wang, K., Li, X.D., Zhang, J.N., Ding J., Karl, S., Timothy, D., Liang, C.H. and Huang, C. (2017) Breast Lesion Characterization Using Whole-Lesion Histogram Analysis with Stretched-Exponential Diffusion Model. Journal of Magnetic Resonance Imaging, 47, 1701-1710. https://doi.org/10.1002/jmri.25904
|
[14]
|
Pinker, K., Bogner, W., Baltzer, P., Trattnig, S., Gruber, S., Abeyakoon, O., Bernathova, M., Zaric, O., Dubsky, P., Bago-Horvath, Z., Weber, M., Leithner, D. and Helbich, T.H. (2013) Clinical Application of Bilateral High Temporal and Spatial Resolution Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Breast at 7 T. European Radiology, 24, 913-920. https://doi.org/10.1007/s00330-013-3075-8
|
[15]
|
Wen, D.L. (2018) The Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Combined with Magnetic Resonance Diffusion-Weighted Imaging in the Diagnosis of Breast Cancer Patients. Journal of Practical Medical Imaging, 19, 131-133.
|
[16]
|
Liu, W.H. (2016) Progress and Research Direction of Quantitative MRI in Breast. Chinese Journal of Radiology, 50, 321-323.
|
[17]
|
Li, R.M., Gu, Y.J., Mao, J., et al. (2011) Quantitative Dynamic Enhancement MRI for Differential Diagnosis of Benign and Malignant Breast Lesions. Chinese Journal of Radiology, 45, 164-169.
|
[18]
|
Kim, W.H., Chang, J.M., Koo, H.R., et al. (2016) Impact of Prior Mammograms on Combined Reading of Digital Mammography and Digital Breast Tomosynthesis. Acta Radiologica, 58, 148-155. https://doi.org/10.1177/0284185116647211
|
[19]
|
Shin, H.J., Kim, H.H., Shin, K.C., Sung, Y.S., Cha, J.H., Lee, J.W., Son, B.H. and Ahn, S.H. (2016) Prediction of Low-Risk Breast Cancer Using Perfusion Parameters and Apparent Diffusion Coefficient. Magnetic Resonance Imaging, 34, 67-74.
https://doi.org/10.1016/j.mri.2015.10.028
|
[20]
|
Fei, Y., Xu, J.M., Shen, Y.K., et al. (2016) Correlation between Quantitative Parameters of DCE-MRI and Biological Prognostic Factors in Breast Cancer. Journal of Medical Imaging, 26, 1625-1628.
|
[21]
|
Yeung, D.K., Cheung, H.S. and Tse, G.M. (2001) Human Breast Lesions: Characterization with Contrast-Enhanced in Vivo Proton MR Spectroscopy—Initial Results. Radiology, 220, 40-46. https://doi.org/10.1148/radiology.220.1.r01jl0240
|
[22]
|
Thakur, S.B., Horvat, J.V., Ileana, H., Sutton, O.M., Bernard-Davila, B., Michael, W., Hun, O.J., Adele, M.M., Daly, A., Doris, L., Sandra, B., Dilip, G., Elizabeth, M., Morris, E.A. and Katja, P. (2019) Quantitative in Vivo Proton MR Spectroscopic Assessment of Lipid Metabolism: Value for Breast Cancer Diagnosis and Prognosis. Journal of Magnetic Resonance Imaging, 50, 239-249.
https://doi.org/10.1002/jmri.26622
|
[23]
|
Galati, F., Luciani, M.L., Caramanico, C., Moffa, G., Catalano, C. and Pediconi, F. (2019) Breast Magnetic Resonance Spectroscopy at 3 T in Biopsy-Proven Breast Cancers: Does Choline Peak Correlate with Prognostic Factors. Investigative Radiology, 54, 767-773. https://doi.org/10.1097/RLI.0000000000000597
|
[24]
|
Vassiou, K., Tsougos, I., Kousi, E., Vlychou, M., Athanasiou, E., Theodorou, K., Arvanitis, D.L. and Fezoulidis, I.V. (2013) Application Value of 3T 1H-Magnetic Resonance Spectroscopy in Diagnosing Breast Tumors. Acta Radiologica (Stockholm, Sweden: 1987), 54, 380-388. https://doi.org/10.1177/0284185113475921
|
[25]
|
Jena, A., Taneja, S. and Mehta, S.B. (2012) Integrated Quantitative DCE-MRI and DW-MRI to Characterize Breast Lesions. European Journal of Radiology, 81, S64-S65. https://doi.org/10.1016/S0720-048X(12)70025-6
|
[26]
|
Wan, W., Chen, S.L., Tian, T.Q., Chen, J.L., Xu, X.L. and Liu, W. (2012) The Differential Value of Breast MRT1 WI Dynamic Enhancement Combined with T2 WI First Perfusion Imaging for Benign and Malignant Breast Lesions. Journal of Clinical Radiology Journal of Learning, 31, 184-187.
|
[27]
|
Yuan, L. and Zhu, B. (2008) Clinical Application Value of MRI Perfusion Imaging in Breast Tumors. Medical Journal, No. 7, 775-777.
|
[28]
|
Li, C., Meng, S., Yang, X., et al. (2014) The Value of T2 in Differentiating Metastatic from Benign Axillary Lymph Nodes in Patients with Breast Cancer: A Preliminary in Vivo Study. PLoS ONE, 9, e84038. https://doi.org/10.1371/journal.pone.0084038
|
[29]
|
Wang, X.H., Peng, W.J., Tang, F., et al. (2010) Application of T2 Magnetic Resonance Perfusion Imaging in Monitoring the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Journal of Practical Radiology, 26, 1323-1327.
|
[30]
|
Plecha, D.M. and Faulhaber, P. (2017) PET/MRI in Breast Cancer. European Journal of Radiology, 94, A26-A34. https://doi.org/10.1016/j.ejrad.2017.05.006
|
[31]
|
Moy, L., Noz, M.E., Maguire, J., et al. (2010) Role of Fusion of Prone FDG-PET and Magnetic Resonance Imaging of the Breasts in the Evaluation of Breast Cancer. The Breast Journal, 16, 369-376. https://doi.org/10.1111/j.1524-4741.2010.00927.x
|
[32]
|
Xu, Y.F., Liang, J.T., Wang, F.X., et al. (2019) Preliminary Comparative Study of 18F-FDG PET/MR and PET/CT in the Diagnosis of Breast Tumors. Journal of Clinical Radiology, 38, 815-820.
|
[33]
|
Gillies, R.J., Anderson, A.R., Gatenby, R.A., et al. (2010) The Biology Underlying Molecular Imaging in Oncology: From Genome to Anatome and Back Again. Clinical Radiology, 65, 517-521. https://doi.org/10.1016/j.crad.2010.04.005
|
[34]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441. https://doi.org/10.1016/j.ejca.2011.11.036
|
[35]
|
Levy, M.A., Freymann, J.B., Kirby, J.S., et al. (2012) Informatics Methods to Enable Sharing of Quantitative Imaging Research Data. Magnetic Resonance Imaging, 30, 1249-1256. https://doi.org/10.1016/j.mri.2012.04.007
|
[36]
|
Parekh, V. and Jacobs, M.A. (2016) Radiomics: A New Application from Established Techniques. Expert Review of Precision Medicine and Drug Development, 1, 207-226. https://doi.org/10.1080/23808993.2016.1164013
|
[37]
|
Whitney, H.M., Taylor, N.S., Drukker, K., et al. (2019) Additive Benefit of Radiomics over Size Alone in the Distinction between Benign Lesions and Luminal a Cancers on a Large Clinical Breast MRI Dataset. Academic Radiology, 26, 202-209.
https://doi.org/10.1016/j.acra.2018.04.019
|
[38]
|
Keller, P.J., Lin, A.F., Arendt, L.M., et al. (2010) Mapping the Cellular and Molecular Heterogeneity of Normal and Malignant Breast Tissues and Cultured Cell Lines. Breast Cancer Research, 12, R87. https://doi.org/10.1186/bcr2755
|
[39]
|
Hui, L., Zhu, Y., Burnside, E.S., et al. (2016) MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of Mamma Print, Oncotype DX, and PAM50 Gene Assays. Radiology, 281, 382-391.
https://doi.org/10.1148/radiol.2016152110
|
[40]
|
Sala, E., Mema, E., Himoto, Y., et al. (2017) Unravelling Tumour Heterogeneity Using Next-Generation Imaging: Radiomics, Radiogenomics, and Habitat Imaging. Clinical Radiology, 72, 3-10. https://doi.org/10.1016/j.crad.2016.09.013
|
[41]
|
Zhao, G.Y., Yin, J.D., Guo, W.L., et al. (2019) Investigation and Analysis of the Use of Medical Magnetic Resonance Equipment in 2018. China Medical Equipment, 34, 15-18.
|
[42]
|
Qiu, X.L., Yao, S.M. and Bao, J.L. (2018) Application Performance Evaluation of Domestic Superconducting Magnetic Resonance Imaging Equipment. China Medical Equipment, 33, 65-69.
|
[43]
|
Wang, L.J., Bi, F., Zhang, L.F., et al. (2015) Investigation and Analysis of Maturity of Domestic Medical Equipment. China Medical Equipment, 30, 6-9.
|