[1]
|
Jubert, A., Legarto, M.L., Massa, N.E., Tevez, L.L. and Okulik, N.B. (2006) Vibrational and Theoretical Studies of Non-Steroidal Anti-Inflammatory Drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-a-methyl-2-naphthalene acetic acid] and Tolmetin Acids [1-methyl-5-(4-methylbenzoyl) 1H-pyrrole-2-acetic acid]. Journal of Molecular Structure, 783, 34-51.
|
[2]
|
Darinee, S.-T., Prasat, K. and Supa, H.A. (2009) Roles of Key Residues Specific to Cyclooxygenase II: An ONIOM Study. Monatshefte für Chemie, 140, 1533-1541. https://doi.org/10.1007/s00706-009-0194-7
|
[3]
|
Waterbury, L., Kunysz, E.A. and Beuerman, R. (1987) Effects of Steroidal and Nonsteroidal Anti-Inflammatory Agents on Corneal Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 3, 43-54. https://doi.org/10.1089/jop.1987.3.43
|
[4]
|
Schalnus, R. (2003) Topical Nonsteroidal Anti-Inflammatory Therapy in Ophthalmology. Ophthalmologica, 217, 89-98. https://doi.org/10.1159/000068563
|
[5]
|
Donnenfeld, E.D., Holland, E.J., Stewart, R.H., Gow, J.A., Grillone, L.R., Bromfenac Ophthalmic Solution 0.09% (Xibrom) Study Group (2007) Bromfenac Ophthalmic Solution 0.09% (Xibrom) for Postoperative Ocular Pain and Inflammation. Ophthalmology, 114, 1653-1662. https://doi.org/10.1016/j.ophtha.2006.12.029
|
[6]
|
Uchio, E., Itoh, Y. and Kadonosono, K. (2007) Topical Bromfenac Sodium for Long-Term Management of Vernal Keratoconjunctivitis. Ophthalmologica, 221, 153-158. https://doi.org/10.1159/000099294
|
[7]
|
Telander, D.G. (2011) Inflammation and Age-Related Macular Degeneration (AMD). Seminars in Ophthalmology, 26, 192-197. https://doi.org/10.3109/08820538.2011.570849
|
[8]
|
Jones, J. and Francis, P. (2009) Ophthalmic Utility of Topical Bromfenac, a Twice-Daily Nonsteroidal Anti-Inflammatory Agent. Expert Opinion on Pharmacotherapy, 10, 2379-2385. https://doi.org/10.1517/14656560903188425
|
[9]
|
Cho, H., Wolf, K.J. and Wolf, E.J. (2009) Management of Ocular Inflammation and Pain Following Cataract Surgery: Focus on Bromfenac Ophthalmic Solution. Clinical Ophthalmology, 3, 199-210. https://doi.org/10.2147/OPTH.S4806
|
[10]
|
Yoshinaga, N., Arimura, N., Otsuka, H., Kawahara, K. and Hashiguchi, T. (2011) NSAIDs Inhibit Neovascularization of Choroid through HO-1-Dependent Pathway. Laboratory Investigation, 91, 1277 1290. https://doi.org/10.1038/labinvest.2011.101
|
[11]
|
Gomi, F., Sawa, M., Tsujikawa, M. and Nishida, K. (2012) Topical Bromfenac as an Adjunctive Treatment with Intravitreal Ranibizumab for Exudative Age-Related Macular Degeneration. Retina, 32, 1804-1810. https://doi.org/10.1097/IAE.0b013e31825be87f
|
[12]
|
Miyake, K., Ogawa, T., Tajika, T., Gow, J.A. and McNamara, T.R. (2008) Ocular Pharmacokinetics of a Single Dose of Bromfenac Sodium Ophthalmic Solution 0.1% in Human Aqueous Humor. Journal of Ocular Pharmacology and Therapeutics, 24, 573-578. https://doi.org/10.1089/jop.2007.0132
|
[13]
|
Baklayan, G.A., Patterson, H.M., Song, C.K., Gow, J.A. and McNamara, T.R. (2008) 24-Hour Evaluation of the Ocular Distribution of (14)C-Labeled Bromfenac Following Topical Instillation into the Eyes of New Zealand White Rabbits. Journal of Ocular Pharmacology and Therapeutics, 24, 392-398. https://doi.org/10.1089/jop.2007.0082
|
[14]
|
Kida, T., Kozai, S., Takahashi, H., Isaka, M. and Tokushige, H. (2014) Pharmacokinetics and Efficacy of Topically Applied Nonsteroidal Anti-Inflammatory Drugs in Retinochoroidal Tissues in Rabbits. PLoS ONE, 9, e96481.
|
[15]
|
Becke, A.D. (1998) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
|
[16]
|
Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
|
[17]
|
Casida, M.E. (1995) Recent Advances in Density Functional Methods, Part I. World Scientific, Singapore.
|
[18]
|
Gross, E.K.U., Dobson, J.F. and Petersilka, M. (1996) Density Functional Theory II. Springer, Heidelberg, 181.
|
[19]
|
Miertus, S., Scrocco, E. and Tomasi, J. (1981) Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects. The Journal of Chemical Physics, 55, 117-129. https://doi.org/10.1016/0301-0104(81)85090-2
|
[20]
|
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian09, Revision A.02. Gaussian, Inc., Wallingford.
|
[21]
|
Remko, M., Remková, A. and Broer, R. (2016) Theoretical Study of Molecular Structure and Physicochemical Properties of Novel Factor Xa Inhibitors and Dual Factor Xa and Factor IIa Inhibitors. Molecules, 21, 185. https://doi.org/10.3390/molecules21020185
|
[22]
|
Remko, M., Broer, R. and Remková, A. (2014) A Comparative Study of the Molecular Structure, Lipophilicity, Solubility, Acidity, Absorption and Polar Surface Area of Coumarinic Anticoagulants and Direct Thrombin Inhibitors. RSC Advances, 4, 8072-8084. https://doi.org/10.1039/C3RA42347F
|
[23]
|
Remko, M., Remková, A. and Broer, R. (2016) A Comparative Study of Molecular Structure, pKa, Lipophilicity, Solubility, Absorption and Polar Surface Area of Some Antiplatelet Drugs. International Journal of Molecular Sciences, 17, 388. https://doi.org/10.3390/ijms17030388
|
[24]
|
Sorenson, J.R. (1976) Copper Chelates as Possible Active Forms of the Antiarthritic Agents. Journal of Medicinal Chemistry, 19, 135-148. https://doi.org/10.1021/jm00223a024
|
[25]
|
Sorensen, J.R. (1982) Metal Ions in Biological Systems. Marcel Dekker, New York, Vol. 14, 77-124.
|
[26]
|
Milan, R. (2003) Theoretical Study of Molecular Structure and Gas-Phase Acidity of Some Biologically Active Sulfonamides. The Journal of Physical Chemistry A, 107, 720-725. https://doi.org/10.1021/jp026980m
|
[27]
|
Lim, C., Bashford, D. and Karplus, M. (1991) Absolute pKa Calculations with Continuum Dielectric Methods. The Journal of Physical Chemistry, 95, 5610-5620. https://doi.org/10.1021/j100167a045
|
[28]
|
Topol, I.A., Tawa, G.J., Burt, S.K. and Rashin, A.A. (1997) Calculation of Absolute and Relative Acidities of Substituted Imidazoles in Aqueous Solvent. The Journal of Physical Chemistry A, 101, 10075-10081. https://doi.org/10.1021/jp9723168
|
[29]
|
Assoma, A.B., Bede, A.L., Kone, M. and N’Guessan, Y.T. (2010) Theoretical Study of Stability, Tautomerism, Equilibrium Constants (pkT), Activation Energies and Acidity of 6-Thioxanthine in Gas and Aqueous Phase by the Ab Initio Method and Functional Density Theory Calculations. European Journal of Scientific Research, 44, 337-354.
|
[30]
|
Assoma, A.B., Bede, A.L., Yapo, K.D., N’Guessan, B.R. and Bamba, E.-H.S. (2018) étude Théorique de la Stabilité, de la Tautomérie et de L’acidité de la 2,6-Dithioxanthine Par la Méthode de la Théorie de la Fonctionnelle de Densité. European Journal of Scientific Research, 149, 148-152.
|
[31]
|
Assoma, B.A., Bede, L.A., N’Guessan, R.B., Kone, S., Bamba, S.E. and N’Guessan, T.Y. (2018) Stability, Tautomerism and Acidity of Xanthine by the Density Functional Theory (DFT). Journal of Current Chemical and Pharmaceutical Sciences, 8, 114.
|
[32]
|
Assoma, A.B., Kone, M., Alao, L.L, Bede, A.L., Kone, S., N’Guessan, B.R., Bamba, E.-H.S. and N’guessan, Y.T. (2019) Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases. International Journal of Computational and Theoretical Chemistry, 7, 49-55.
|
[33]
|
Mohd, S., AlFaify, S., Haider, A. and Shabbir, M. (2015) First Principal Studies of Spectroscopic (IR and Raman, UV-Visible), Molecular Structure, Linear and Nonlinear Optical Properties of L-Arginine p-Nitrobenzoate Monohydrate (LANB): A New Non-Centrosymmetric Material. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 84-92. https://doi.org/10.1016/j.saa.2015.02.111
|
[34]
|
Bede, A.L., Assoma, A.B., Yapo, K.D., Kone, M.G.-R., Kone, S., Kone, M., N’Guessan, B.R. and Bamba, E.-H.S. (2018) Theoretical Study by Density Functional Theory Method (DFT) of Stability, Tautomerism, Reactivity and Prediction of Acidity of Quinolein-4-One Derivatives. Computational Chemistry, 6, 57-70. https://doi.org/10.4236/cc.2018.63005
|
[35]
|
Koopmans, T. (1933) über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
|
[36]
|
Rauk, A. (2001) Orbital Interaction Theory of Organic Chemistry. 2nd Edition, John Wiley & Sons, New York, 34. https://doi.org/10.1002/0471220418
|
[37]
|
Pearson, R.G. (1985) Absolute Electronegativity: An Hardness Correlated. Journal of the American Chemical Society, 107, 6801-6806. https://doi.org/10.1021/ja00310a009
|
[38]
|
Pearson, R.G. (1987) Recent Advances in the Concept of Hard and Soft Acids and Bases. Journal of Chemical Education, 64, 561-567. https://doi.org/10.1021/ed064p561
|
[39]
|
Walsh, D.A., Moran, H.W., Shamblee, D.A., Uwaydah, I.M., Welstead, W.J.Jr., et al. (1984) Antiinflammatory Agents 3 Synthesis and Pharmacological Evaluation of 2-amino-3-benzoylphenyl Acetic Acid and Analogues. Journal of Medicinal Chemistry, 11, 1379-1388. https://doi.org/10.1021/jm00377a001
|
[40]
|
Wang, D., Hao, C., Wang, S., Dong, H. and Qiu, J. (2012) Time-Dependent Density Functional Theory Study on the Electronic Excited-State Hydrogen Bonding of the Chromophore Coumarin 153 in a Room Temperature Ionic Liquid. Journal of Molecular Modeling, 18, 937-945. https://doi.org/10.1007/s00894-011-1131-3
|
[41]
|
Mylsamy, K., Ramasamy, K. and Lakshmipathi, S. (2013) Spectroscopic Investigations and Hydrogen Bond Interactions of 8-Aza Analogues of Xanthine, Theophylline and Caffeine: A Theoretical Study. Journal of Molecular Modeling, 19, 1835-1851. https://doi.org/10.1007/s00894-012-1742-3
|
[42]
|
Kim, S.J., Flach, A.J. and Jampol, L.M. (2010) Nonsteroidal Anti-Inflammatory Drugs in Ophthalmology. Survey of Ophthalmology, 55, 108-133. https://doi.org/10.1016/j.survophthal.2009.07.005
|
[43]
|
Ruiz, J., López, M., Mila, J., Lozoya, E. and Lozano, J.J. (1993) QSAR and Conformational Analysis of the Antiinflammatory Agent Amfenac and Analogues. Journal of Computer-Aided Molecular Design, 7, 183-198. https://doi.org/10.1007/BF00126444
|
[44]
|
Ogawa, T., Sakaue, T., Terai, T. and Fukiage, C. (1995) Effects of Bromfenac Sodium, Non-Steroidal Anti-Inflammatory Drug, on Acute Ocular Inflammation. Nihon Ganka Gakkai Zasshi, 99, 406-411.
|
[45]
|
Waterbury, L.D., Silliman, D. and Jolas, T. (2006) Comparison of Cyclooxygenase Inhibitory Activity and Ocular Anti-Inflammatory Effects of Ketorolac Tromethamine and Bromfenac Sodium. Current Medical Research and Opinion, 22, 1133-1140. https://doi.org/10.1185/030079906X112471
|