[1]
|
UNCTAD (2018) Review of Maritime Transport 2018 (UNCTAD/RMT/2018). https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
|
[2]
|
Marmer, E. and Langmann, B. (2005) Impact of Ship Emissions on the Mediterranean Summertime Pollution and Climate: A Regional Model Study. Atmospheric Environment, 39, 4659-4669. https://doi.org/10.1016/j.atmosenv.2005.04.014
|
[3]
|
US-EPA (2009) Proposal to Designate an Emission Control Area for Nitrogen Oxides, Sulfur Oxides and Particulate Matter. Technical Support Document, Chapter 3: Impacts of Shipping Emissions on Air Quality, Health and the Environment. U.S. Environmental Protection Agency, Assessment and Standards Division, Washington DC.
|
[4]
|
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., de Vlieger, I. and van Aardenne, J. (2014) Impact of Maritime Transport Emissions on Coastal Air Quality in Europe. Atmospheric Environment, 90, 96-105. https://doi.org/10.1016/j.atmosenv.2014.03.046
|
[5]
|
Westerlund, J., Hallquist, M. and Hallquist, A.M. (2015) Characterization of Fleet Emissions from Ships through Multi-Individual Determination of Size-Resolved Particle Emissions in a Coastal Area. Atmospheric Environment, 112, 159-166. https://doi.org/10.1016/j.atmosenv.2015.04.018
|
[6]
|
Zimmerman, N., Wang, J.M., Jeong, C.-H., Wallace, J.S. and Evans, G.J. (2016) Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines. Environmental Science & Technology, 50, 8385-8392. https://doi.org/10.1021/acs.est.6b01800
|
[7]
|
López-Aparicio, S., Tonnesen, D., Thanh, T.N. and Neilson, H. (2017) Shipping Emissions in a Nordic Port: Assessment of Mitigation Strategies. Transportation Research Part D, 53, 205-216. https://doi.org/10.1016/j.trd.2017.04.021
|
[8]
|
Becerril-Valle, M., Coz, E., Prévot, A.S.H., Mocnik, G., Pandis, S.N., Sánchez de la Campa, A.M., Alastuey, A., Díaz, E., Pérez, R.M. and Artínano, B. (2017) Characterization of Atmospheric Black Carbon and Co-Pollutants in Urban and Rural Areas of Spain. Atmospheric Environment, 169, 36-53. https://doi.org/10.1016/j.atmosenv.2017.09.014
|
[9]
|
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L. and Britter, R. (2014) Ultrafine Particles in Cities. Environment International, 66, 1-10. https://doi.org/10.1016/j.envint.2014.01.013
|
[10]
|
Albuquerque, P., Gomes, J. and Bordado, J. (2012) Assessment of Exposure to Airborne Ultrafine Particles in the Urban Environment of Lisbon, Portugal. Journal of the Air & Waste Management Association, 62, 373-380. https://doi.org/10.1080/10962247.2012.658957
|
[11]
|
WHO (2013) World Health Organization—Health Effects of Particulate Matter. http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particu late-matter-final-Eng.pdf
|
[12]
|
Sioutas, C., Delfino, R. and Singh, M. (2005) Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environmental Health Perspectives, 113, 947-955. https://doi.org/10.1289/ehp.7939
|
[13]
|
Ezz, W., Mazaheri, M., Robinson, P., Johnson, G., Clifford, S., He, C., Morawska, L. and Marks, G. (2015) Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation. International Journal of Environmental Research and Public Health, 12, 1687-1702. https://doi.org/10.3390/ijerph120201687
|
[14]
|
Peters, A., Wichmann, E., Tuch, T., Heinrich, J. and Heyder, J. (1997) Respiratory Effects Are Associated with the Number of Ultrafine Particles. American Journal of Respiratory and Critical Care Medicine, 155, 1376-1383. https://doi.org/10.1164/ajrccm.155.4.9105082
|
[15]
|
Penttinen, P., Timonen, K., Tiittanen, P., Mirme, A., Ruuskanen, J. and Pekkanen, J. (2001) Number Concentration and Size of Particles in Urban Air: Effects on Spirometric Lung Function in Adult Asthmatic Subjects. Environmental Health Perspectives, 109, 319-323. https://doi.org/10.1289/ehp.01109319
|
[16]
|
Semmler, M., Seitz, J., Erbe, F., Mayer, P., Heyder, J., Oberdorster, G. and Kreyling, W. (2004) Long-Term Clearance Kinetics of Inhaled Ultrafine Insoluble Iridium Particles from the Rat Lung, Including Transient Translocation into Secondary Organs. Inhalation Toxicology, 16, 453-459. https://doi.org/10.1080/08958370490439650
|
[17]
|
Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Hof, V., Heyder, J. and Gehr, P. (2005) Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environmental Health Perspectives, 113, 1555-1560. https://doi.org/10.1289/ehp.8006
|
[18]
|
Carosino, C., Bein, K., Plummer, L., Castaneda, A., Zhao, Y., Wexler, A. and Pinkerton, K. (2015) Allergic Airway Inflammation Is Differentially Exacerbated by Daytime and Nighttime Ultrafine and Submicron Fine Ambient Particles: Hemeoxygenase-1 as an Indicator of PM-Mediated Allergic Inflammation. Journal of Toxicology and Environmental Health, Part A, 78, 254-266. https://doi.org/10.1080/15287394.2014.959627
|
[19]
|
Lanzinger, S., Schneider, A., Breitner, S., Stafoggia, M., Erzen, I., Dostal, M. and Peters, A. (2016) Associations between Ultrafine and Fine Particles and Mortality in Five Central European Cities—Results from the UFIREG Study. Environment International, 88, 44-52. https://doi.org/10.1016/j.envint.2015.12.006
|
[20]
|
Terzano, C., Di Stefano, F., Conti, V., Graziani, E. and Petroianni, A. (2010) Air Pollution Ultrafine Particles: Toxicity beyond the Lung. European Review for Medical and Pharmacological Sciences, 14, 809-821.
|
[21]
|
Stanek, L., Sacks, J., Dutton, S. and Dubois, J. (2011) Attributing Health Effects to Apportioned Components and Sources of Particulate Matter: An Evaluation of Collective Results. Atmospheric Environment, 45, 5655-5663. https://doi.org/10.1016/j.atmosenv.2011.07.023
|
[22]
|
Slezakova, K., Alvim-Ferraz, M. and Pereira, M. (2012) Elemental Characterization of Indoor Breathable Particles at a Portuguese Urban Hospital. Journal of Toxicology and Environmental Health, Part A, 75, 909-919. https://doi.org/10.1080/15287394.2012.690707
|
[23]
|
Ferreira, A., Cemlyn-Jones, J. and Cordeiro, C. (2013) Nanoparticles, Nanotechnology and Pulmonary Nanotoxicology. Revista Portuguesa de Pneumologia, 19, 28-37. https://doi.org/10.1016/j.rppneu.2012.09.003
|
[24]
|
Gomes, J., Bordado, J. and Albuquerque, P. (2012) Monitoring Exposure to Airborne Ultrafine Particles in Lisbon, Portugal. Inhalation Toxicology, 24, 425-433. https://doi.org/10.3109/08958378.2012.684077
|
[25]
|
César, A., Nascimento, L., Mantovani, K. and Pompeo Vieira, L. (2016) Fine Particulate Matter Estimated by Mathematical Model and Hospitalizations for Pneumonia and Asthma in Children. Revista Paulista de Pediatria (English Edition), 34, 18-23. https://doi.org/10.1016/j.rppede.2015.12.005
|
[26]
|
Buonanno, G., Giovinco, G., Morawska, L. and Stabile, L. (2015) Lung Cancer Risk of Airborne Particles for Italian Population. Environmental Research, 142, 443-451. https://doi.org/10.1016/j.envres.2015.07.019
|
[27]
|
Grana, M., Toschi, N., Vicentini, L., Pietroiusti, A. and Magrini, A. (2017) Exposure to Ultrafine Particles in different Transport Modes in the City of Rome. Environmental Pollution, 228, 201-210. https://doi.org/10.1016/j.envpol.2017.05.032
|
[28]
|
IARC (2014) Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans No. 105. International Agency for Research on Cancer, Lyon. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono105.pdf
|
[29]
|
Ebisu, K., Berman, J. and Bell, M. (2016) Exposure to Coarse Particulate Matter during Gestation and Birth Weight in the U.S. Environment International, 94, 519-524. https://doi.org/10.1016/j.envint.2016.06.011
|
[30]
|
Shah, A., Langrish, J., Nair, H., McAllister, D., Hunter, A., Donaldson, K., Newby, D. and Mills, N. (2013) Global Association of Air Pollution and Heart Failure: A Systematic Review and Meta-Analysis. The Lancet, 382, 1039-1048. https://doi.org/10.1016/S0140-6736(13)60898-3
|
[31]
|
Holland, M. (2014) Cost-Benefit Analysis of Final Policy Scenarios for the EU Clean Air Package. Version 2 (Corresponding to IIASA TSAP Report #11, Version 2a). http://ec.europa.eu/environment/air/pdf/TSAP%20CBA.pdf
|
[32]
|
Reche, C., Viana, M., Moreno, T., Querol, X., Alastuey, A., Pey, J. and Richard, A. (2011) Peculiarities in Atmospheric Particle Number and Size-Resolved Speciation in an Urban Area in the Western Mediterranean: Results from the DAURE Campaign. Atmospheric Environment, 45, 5282-5293. https://doi.org/10.1016/j.atmosenv.2011.06.059
|
[33]
|
Liggio, J., Gordon, M., Smallwood, G., Li, S.-M., Stroud, C., Staebler, R., Lu, G., Lee, P., Taylor, B. and Brook, J. (2012) Are Emissions of Black Carbon from Gasoline Vehicles Underestimated? Insights from Near and On-Road Measurements. Environmental Science & Technology, 46, 4819-4828. https://doi.org/10.1021/es2033845
|
[34]
|
Fiore, A.M., Naik, V., Spracklen, D.V., Steiner, A., Unger, N., Prather, M., Bergmann, D., Cameron.Smith, P.J., Cionni, I., Collins, W.J., Eyring, V., Folberth, G.A., Ginoux, P., Horowitz, L.W., Josse, B., Lamarque, J.-F., MacKenzie, I.A., Nagashima, T., O’Connor, F.M., Righi, M., Rumbold, S.T., Shindell, D.T., Skeie, R.B., Sudo, K., Szopa, S., Takemura, T. and Zeng, G. (2012) Global Air Quality and Climate. Chemical Society Reviews, 41, 6663-6683. https://doi.org/10.1039/c2cs35095e
|
[35]
|
Booth, B. and Bellouin, N. (2015) Climate Change: Black Carbon and Atmospheric Feedbacks. Nature, 519, 167-168. https://doi.org/10.1038/519167a
|
[36]
|
Hodnebrog, O., Myhre, G. and Samset, B.H. (2014) How Shorter Black Carbon Lifetime Alters Its Climate Effect. Nature Communications, 5, Article No. 5065. https://doi.org/10.1038/ncomms6065
|
[37]
|
Endresen, O., Sorgard, E., Sundet, J.K., Dalsoren, S.B., Isaksen, I.S., Berglen, T.F. and Gravir, G. (2003) Emission from International Sea Transportation and Environmental Impact. Journal of Geophysical Research: Atmospheres, 108, 4650-4666. https://doi.org/10.1029/2002JD002898
|
[38]
|
Lonati, G., Cernuschi, S. and Sidi, S. (2010) Air Quality Impact Assessment of At-Berth Ship Emissions: Case-Study for the Project of a New Freight Port. Science of the Total Environment, 409, 192-200. https://doi.org/10.1016/j.scitotenv.2010.08.029
|
[39]
|
Miola, A. and Ciuffo, B. (2011) Estimating Air Emissions from Ships: Meta-Analysis of Modelling Approaches and Available Data Sources. Atmospheric Environment, 45, 2242-2251. https://doi.org/10.1016/j.atmosenv.2011.01.046
|
[40]
|
Hulskotte, J.H.J. and Denier van der Gon, H.A.C. (2010) Fuel Consumption and Associated Emissions from Seagoing Ships at Berth Derived from an On-Board Survey. Atmospheric Environment, 44, 1229-1236. https://doi.org/10.1016/j.atmosenv.2009.10.018
|
[41]
|
Cullinane, K. and Cullinane, S. (2013) Atmospheric Emissions from Shipping: The Need for Regulation and Approaches to Compliance. Transport Reviews, 33, 377-401. https://doi.org/10.1080/01441647.2013.806604
|
[42]
|
Pey, J., Pérez, N., Cortés, J., Alastuey, A. and Querol, X. (2013) Chemical Fingerprint and Impact of Shipping Emissions over a Western Mediterranean Metropolis: Primary and Aged Contributions. Science of the Total Environment, 463-464, 497-507. https://doi.org/10.1016/j.scitotenv.2013.06.061
|
[43]
|
Pérez, N., Pey, J., Reche, C., Cortés, J., Alastuey, A. and Querol, X. (2016) Impact of Harbour Emissions on Ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of Secondary Aerosol Formation within the Urban Area. Science of the Total Environment, 571, 237-250. https://doi.org/10.1016/j.scitotenv.2016.07.025
|
[44]
|
Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F.M. and Contini, D. (2014) Source Apportionment of PM2.5 in the Harbour-Industrial Area of Brindisi (Italy): Identification and Estimation of the Contribution of In-Port Ship Emissions. Science of the Total Environment, 497-498, 392-400. https://doi.org/10.1016/j.scitotenv.2014.08.007
|
[45]
|
Donateo, A., Gregoris, E., Gambaro, A., Merico, E., Giua, R., Nocioni, A. and Contini, D. (2014) Contribution of Harbour Activities and Ship Traffic to PM2.5, Particle Number Concentrations and PAHs in a Port City of the Mediterranean Sea (Italy). Environmental Science & Pollution Research, 21, 9415. https://doi.org/10.1007/s11356-014-2849-0
|
[46]
|
Ledoux, F., Roche, C., Cazier, F., Beaugard, C. and Courcot, D. (2018) Influence of Ship Emissions on NOx, SO2, O3 and PM Concentrations in a North-Sea Harbor in France. Journal of Environmental Sciences, 71, 56-66. https://doi.org/10.1016/j.jes.2018.03.030
|
[47]
|
Alver, F., Sarac, B.A. and Alver Sahin, ü. (2018) Estimating of Shipping Emissions in the Samsun Port from 2010 to 2015. Atmospheric Pollution Research, 9, 822-828. https://doi.org/10.1016/j.apr.2018.02.003
|
[48]
|
Nunes, R.A.O., Alvim-Ferraz, M.C.M., Martins, F.G. and Sousa, S.I.V. (2017) The Activity-Based Methodology to Assess Ship Emissions—A Review. Environmental Pollution, 231, 87-103. https://doi.org/10.1016/j.envpol.2017.07.099
|
[49]
|
EEA European Environmental Agency (2016) European Aviation Environmental Report 2016. https://ec.europa.eu/transport/sites/transport/files/european-aviation-environmental- report-2016-72dpi.pdf
|
[50]
|
Kukkonen, J., Karl, M., Keuken, M.P., Denier van der Gon, H.A.C., Denby, B.R., Singh, V., Douros, J., Manders, A., Samaras, Z., Moussiopoulos, N., Jonkers, S., Aarnio, M., Karppinen, A., Kangas, L., Lützenkirchen, S., Petaja, T. and Sokhi, R.S. (2016) Modelling the Dispersion of Particle Numbers in Five European Cities. Modelling the Dispersion of Particle Numbers in Five European Cities. Geoscientific Model Development, 9, 451-478. https://doi.org/10.5194/gmd-9-451-2016
|
[51]
|
Healy, R.M., O’Connor, I.P., Hellebust, S., Allanic, A., Sodeau, J.R. and Wenger, J.C. (2009) Characterisation of Single Particles from In-Port Ship Emissions. Atmospheric Environment, 43, 6408-6414. https://doi.org/10.1016/j.atmosenv.2009.07.039
|
[52]
|
González, Y. and Rodríguez, S. (2013) A Comparative Study on the Ultrafine Particle Episodes Induced by Vehicle Exhaust: A Crude Oil Refinery and Ship Emissions. Atmospheric Research, 120-121, 43-54. https://doi.org/10.1016/j.atmosres.2012.08.001
|
[53]
|
Merico, E., Donateo, A., Gambaro, A., Cesari, D., Gregoris, E., Barbaro, E., Dinoi, A., Giovanelli, G., Masieri, S. and Contini, D. (2016) Influence of In-Port Ships Emissions to Gaseous Atmospheric Pollutants and to Particulate Matter of Different Sizes in a Mediterranean Harbour in Italy. Atmospheric Environment, 139, 1-10. https://doi.org/10.1016/j.atmosenv.2016.05.024
|
[54]
|
Kopanakis, Ι., Chatoutsidou, S.E., Glytsos, T. and Lazaridis, M. (2018) Impact from Local Sources and Variability of Fine Particle Number Concentration in a Coastal Sub-Urban Site. Atmospheric Research, 213, 136-148. https://doi.org/10.1016/j.atmosres.2018.06.002
|
[55]
|
Moldanová, J., Fridell, E., Winnes, H., Holmin-Fridell, S., Boman, J., Jedynska, A., Tishkova, V., Demidjian, B., Joulie, S., Bladt, H., Ivleva, N.P. and Niessner, R. (2013) Physical and Chemical Characterisation of PM Emissions from Two Ships Operating in European Emission Control Areas. Atmospheric Measurement Techniques Discussions, 6, 3931-3982. https://doi.org/10.5194/amtd-6-3931-2013
|
[56]
|
González, Y., Rodríguez, S., Guerra García, J.C., Trujillo, J.L. and García, R. (2011) Ultrafine Particles Pollution in Urban Coastal Air Due to Ship Emissions. Atmospheric Environment, 45, 4907-4914. https://doi.org/10.1016/j.atmosenv.2011.06.002
|
[57]
|
Merico, E., Gambaro, A., Argiriou, A., Alebic-Juretic, A., Barbaro, E., Cesari, D., Chasapidis, L., Dimopoulos, S., Dinoi, A., Donateo, A., Giannaros, C., Gregoris, E., Karagiannidis, A., Konstandopoulos, A.G., Ivosevic, T., Liora, N., Melas, D., Mifka, B., Orlic, I., Poupkou, A., Sarovic, K., Tsakis, A., Giua, R., Pastore, T., Nocioni, A. and Contini, D. (2017) Atmospheric Impact of Ship Traffic in Four Adriatic-Ionian Port-Cities: Comparison and Harmonization of Different Approaches. Transportation Research Part D, 50, 431-445. https://doi.org/10.1016/j.trd.2016.11.016
|
[58]
|
Lyu, X.P., Guo, H., Cheng, H.R. and Wang, D.W. (2018) New Particle Formation and Growth at a Suburban Site and a Background Site in Hong Kong. Chemosphere, 193, 664-674. https://doi.org/10.1016/j.chemosphere.2017.11.060
|
[59]
|
Hofman, J., Staelens, J., Cordell, R., Stroobants, C., Zikova, N., Hama, S., Wyche, K., Kos, G., Van Der Zee, S., Smallbone, K., Weijers, E., Monks, P. and Roekens, E. (2016) Ultrafine Particles in Four European Urban Environments: Results from a New Continuous Long-Term Monitoring Network. Atmospheric Environment, 136, 68-81. https://doi.org/10.1016/j.atmosenv.2016.04.010
|
[60]
|
Hama, S.M.L., Cordell, R.L. and Monks, P.S. (2017) Quantifying Primary and Secondary Source Contributions to Ultrafine Particles in the UK Urban Background. Atmospheric Environment, 166, 62-78. https://doi.org/10.1016/j.atmosenv.2017.07.013
|
[61]
|
Pushpawela, B., Jayaratne, R. and Morawska, L. (2018) Temporal Distribution and Other Characteristics of New Particle Formation Events in an Urban Environment. Environmental Pollution, 233, 552-560. https://doi.org/10.1016/j.envpol.2017.10.102
|
[62]
|
Babu, S.S., Kompalli, S.K. and Moorthy, K.K. (2016) Aerosol Number Size Distributions over a Coastal Semi Urban Location: Seasonal Changes and Ultrafine Particle Bursts. Science of the Total Environment, 563-564, 351-365. https://doi.org/10.1016/j.scitotenv.2016.03.246
|
[63]
|
Liu, S., Hu, M., Wu, Z., Wehner, B., Wiedensohler, A. and Cheng, Y. (2008) Aerosol Number Size Distribution and New Particle Formation at a Rural/Coastal Site in Pearl River Delta (PRD) of China. Atmospheric Environment, 42, 6275-6283. https://doi.org/10.1016/j.atmosenv.2008.01.063
|
[64]
|
Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P.M., Pérez, N., Querol, X. and Alastuey, A. (2018) Influence of Sea Breeze Circulation and Road Traffic Emissions on the Relationship between Particle Number, Black Carbon, PM1, PM2.5 and PM2.5-10 Concentrations in a Coastal City. Atmospheric Environment, 42, 6523-6534. https://doi.org/10.1016/j.atmosenv.2008.04.022
|
[65]
|
Hama, S.M.L., Cordell, R.L., Kos, G.P.A., Weijers, E.P. and Monks, P.S. (2017) Sub-Micron Particle Number Size Distribution Characteristics at Two Urban Locations in Leicester. Atmospheric Research, 194, 1-16. https://doi.org/10.1016/j.atmosres.2017.04.021
|
[66]
|
Huang, C., Tao, S., Lou, S., Hu, Q., Wang, H., Wang, Q, Li, L, Wang, H., Liu, J., Quan, Y. and Zhou, L. (2017) Evaluation of Emission Factors for Light-Duty Gasoline Vehicles Based on Chassis Dynamometer and Tunnel Studies in Shanghai, China. Atmospheric Environment, 169, 193-203. https://doi.org/10.1016/j.atmosenv.2017.09.020
|
[67]
|
Mordas, G., Plauskaite, K., Prokopciuk, N., Dudoitis, V., Bozzetti, C. and Ulevicius, V. (2016) Observation of New Particle Formation on Curonian Spit Located between Continental Europe and Scandinavia. Journal of Aerosol Science, 97, 38-55. https://doi.org/10.1016/j.jaerosci.2016.03.002
|
[68]
|
Russo, A., Lind, P.G., Raischel, F., Trigo, R. and Mendes, M. (2014) Neural Network Forecast of Daily Pollution Concentration Using Optimal Meteorological Data at Synoptic and Local Scales. Atmospheric Pollution Research, 6, 540-549. https://doi.org/10.5094/APR.2015.060
|
[69]
|
Russo, A., Trigo, R.M., Martins, H. and Mendes, M.T. (2014b) NO2, PM10 and O3 Urban Concentrations and Its Association with Circulation Weather Types in Portugal. Atmospheric Environment, 89, 768-785. https://doi.org/10.1016/j.atmosenv.2014.02.010
|
[70]
|
Monjardino, J., Barros, N., Ferreira, F., Tente, H., Fontes, T., Pereira, P. and Manso, C. (2018) Improving Air Quality in Lisbon: Modelling Emission Abatement Scenarios. 1st IFAC Workshop on Integrated Assessment Modelling for Environmental Systems, Brescia, 10-11 May 2018, University of Brescia, Vol. 51, 61-66. https://doi.org/10.1016/j.ifacol.2018.06.211
|
[71]
|
FCT-NOVA (2017) Inventário de Emissoes Atmosféricas da Regiao de Lisboa e Vale do Tejo 2011-2014. CCDR LVT, Maio. http://www.ccdr-lvt.pt/files
|
[72]
|
Lopes, M., Russo, A., Monjardino, J., Gouveia, C. and Ferreira, F. (2019) Monitoring of Ultrafine Particles in the Surrounding Urban Area of a Civilian Airport. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2019.04.002
|
[73]
|
Ferreira, F., Gomes, P., Tente, H., Carvalho, A., Pereira, P. and Monjardino, J. (2015) Air Quality Improvements Following Implementation of Lisbon’s Low Emission Zone. Atmospheric Environment, 12, 2373-2381. https://doi.org/10.1016/j.atmosenv.2015.09.064
|
[74]
|
Russo, A. and Soares, A.O. (2013) Hybrid Model for Urban Air Pollution Forecasting: A Stochastic Spatio-Temporal Approach. Mathematical Geosciences, 46, 75-93. https://doi.org/10.1007/s11004-013-9483-0
|
[75]
|
P-Trak (2013) P-Trak Ultrafine Particle Couter Model 8525. Operation and Service Manual. (TrakproTM Data Analysis Software Enclosed) P/N 19803880, Revision M July 2013.
|
[76]
|
Kumar, P., Robins, A., Vardoulakis, S. and Quincey, P. (2011) Technical Challenges in Tackling Regulatory Concerns for Urban Atmospheric Nanoparticles. Particuology, 9, 566-571. https://doi.org/10.1016/j.partic.2011.06.002
|