[1]
|
Hassan, M.K., Cheng, Y., Kanwar, M.K., Chu, X.-Y., Ahammed, G.J. and Qi, Z.-Y. (2017) Responses of Plant Proteins to Heavy Metal Stress—A Review. Frontiers in Plant Science, 8, 1492. https://doi.org/10.3389/fpls.2017.01492
|
[2]
|
Li, H., Zhang, H., Song, Y., Yang, Y., Chen, H. and Tang, M. (2017) Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Frontiers in Plant Science, 8, 517. https://doi.org/10.3389/fpls.2017.00517
|
[3]
|
Shaban, M. (2013) Effect of Water and Temperature on Seed Germination and Emergence as a Seed Hydrothermal Time Model. International Journal of Advanced Biological and Biomedical Research, 1, 1686-1691.
|
[4]
|
Dharma-Wardana, M.W.C. (2018) Fertilizer Usage and Cadmium in Soils, Crops and Food. National Research Council of Canada, Ottawa and Department de Physiqque, Universite’ de Montre’al, Que’bec, 1-16.
|
[5]
|
Mekassa, B. and Chandravanshi, B.S. (2015) Levels of Selected Essential and Non-Essential Metalsin Seeds of Korarima (Aframomum corrorima) Cultivated in Ethiopia. Brazilian Journal of Food Technology, 18, 102-111.
https://doi.org/10.1590/1981-6723.5614
|
[6]
|
Ragsdale, S.W. (2009) Nickel-Based Enzyme Systems. The Journal of Biological Chemistry, 284, 18571-18575. https://doi.org/10.1074/jbc.R900020200
|
[7]
|
Stefanowicz, A.M., Stanek, M., Woch, M.W. and Kapusta, P. (2016) The Accumulation of Elements in Plants Growing Spontaneously on Small Heaps Left by the Historical Zn-Pb Ore Mining. Environmental Science and Pollution Research (International), 23, 6524-6534. https://doi.org/10.1007/s11356-015-5859-7
|
[8]
|
Dhiman, S.S., Zhao, X., Li, J., Kim, D., Kalia, V.C., Kim, I.-W., Kim, J.Y. and Lee, J.K. (2017) Metal Accumulation by Sunflower (Helianthus annuus L.) and the Efficacy of Its Biomass in Enzymatic Saccharification. PLoS ONE, 12, e0175845.
https://doi.org/10.1371/journal.pone.0175845
|
[9]
|
Chibuike, G.U. and Obiora, S.C. (2014) Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science, 2014, Article ID: 752708. https://doi.org/10.1155/2014/752708
|
[10]
|
Panuccio, M.R., Jacobsen, S.E., Akhtar, S.S. and Muscolo, A. (2014) Effect of Saline Water on Seed Germination and Early Seedling Growth of the Halophyte Quinoa. AoB Plants, 6, plu047. https://doi.org/10.1093/aobpla/plu047
|
[11]
|
Ashraf, C.M. and Abu-Shakra, S. (1978) Wheat Seed Germination under Low Temperature and Moisture Stress. Agronomy Journal, 70, 135-139.
https://doi.org/10.2134/agronj1978.00021962007000010032x
|
[12]
|
Wilkins, D.A. (1957) A Technique for the Measurement of Lead Tolerance in Plants. Nature, 180, 37-38. https://doi.org/10.1038/180037b0
|
[13]
|
Al-Ansari, F. and Ksiksi, T. (2016) A Quantitative Assessment of Germination Parameters: The Case of Crotalaria persica and Tephrosia apollinea. The Open Ecology Journal, 9, 13-21. https://doi.org/10.1038/180037b0
|
[14]
|
Farooq, M., Basra, S.M.A., Hafeez, K. and Ahmed, N. (2005) Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice. Acta Botanica Sinica, 47, 187-193.
https://doi.org/10.1111/j.1744-7909.2005.00031.x
|
[15]
|
Wolf, B. (1982) A Comprehensive System of Leaf Analysis of Leaf Analyses and Its Use for Diagnosing Crop Nutrient Status. Communications in Soil Science and Plant Analysis, 13, 1035-1059. https://doi.org/10.1080/00103628209367332
|
[16]
|
Sadiq, R. and Maqbool, N. (2016) Acceleration of Cadmium Phytoextraction by Sunflower (Helianthus annuus L.) in Collaboration of Ethylenediaminetetraacetic Acid (EDTA). American-Eurasian Journal of Agricultural & Environmental Sciences, 16, 577-583.
|
[17]
|
Shafiq, M., Zafar, I.M. and Athar, M. (2008) Effect of Lead and Cadmium on Germination and Seedling Growth of Leucaena leucocephala. Journal of Applied Sciences and Environmental Management, 12, 61-66.
|
[18]
|
Bhalerao, S.A., Shrma, A.S. and Poojari, A.C. (2015) Toxicity of Nickel in Plants. International Journal of Pure and Applied Bioscience, 3, 345-355.
|
[19]
|
Faryal, R.F., Tahir, A.E.M. and Hameed, A. (2007) Effect of Wastewater Irrigation on Soil along with Its Micro and Macro Flora. Pakistan Journal of Botany, 39, 193-101.
|
[20]
|
Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R.K., Sharma, S., Tripathi, D.K., Dubey, N.K. and Chauhan, D.K. (2016) Influence of High and Low Levels of Plant Beneficial Heavy Metals Ions on Plant Growth and Development. Frontiers in Environmental Science, 4, 69. https://doi.org/10.3389/fenvs.2016.00069
|
[21]
|
Seregin, I.V., Shpigun, L.K. and Ivanov, V.B. (2003) Distribution and Toxic Effects of Cadmium and Lead on Maize Roots. Russian Journal of Plant Physiology, 51, 525-533. https://doi.org/10.1023/B:RUPP.0000035747.42399.84
|
[22]
|
Singh, S., Saxena, R., Pandey, K., Bhatt, K. and Sinha, S. (2004) Response of Antioxidants in Sunflower (Helianthus annuus L.) Grown on Different Amendments of Tannery Sludge: Its Metal Accumulation Potential. Chemosphere, 57, 1663-1673.
https://doi.org/10.1016/j.chemosphere.2004.07.049
|
[23]
|
Lin, C.C. and Kao, C.H. (2001) Cell Wall Peroxidase against Ferulic Acid, Lignin, and NaCl-Reduced Root Growth of Rice Seedlings. Journal of Plant Physiology, 158, 667-671. https://doi.org/10.1078/0176-1617-00245
|
[24]
|
Ahmad, M.S.A., Hussain, M., Ashraf, M., Ahmad, R. and Ashraf, M.Y. (2007) Effect of Nickel on Seed Germinability of Some Elite Sunflower (Helianthus annuus L.) Cultivars. Pakistan Journal of Botany, 41, 1871-1882.
|
[25]
|
Gopal, R. and Rizvi, A.H. (2008) Excess Lead Alters Growth, Metabolism and Translocation of Certain Nutrients in Radish. Chemosphere, 70, 1539-1544.
https://doi.org/10.1016/j.chemosphere.2007.08.043
|
[26]
|
Kopittke, P.M., Asher, C.J., Kopittke, R.A. and Menzies, N.W. (2007) Toxic Effects of Pb on Growth of Cowpea (Vigna unguiculata). Environmental Pollution, 150, 280-287. https://doi.org/10.1016/j.envpol.2007.01.011
|
[27]
|
Liu, D., Li, T.Q., Jin, F.X., Yang, X.E., Islam, E. and Mahmood, Q. (2008) Lead Induced Changes in the Growth and Antioxidant Metabolism of the Lead Accumulating and Non-Accumulating Ecotypes of Sedum alfredii. Journal of Integrative Plant Biology, 50, 129-140. https://doi.org/10.1111/j.1744-7909.2007.00608.x
|
[28]
|
Arias, J.A., Videa, J.R.P., Ellzey, J.T., Ren, M., Viveros, M.N. and Gardea-Torresdey, J.L. (2010) Effects of Glomus deserticola Inoculation on Prosopis: Enhancing Chromium and Lead Uptake and Translocation as Confirmed by X-Ray Mapping, ICP-OES and TEM Techniques. Environmental and Experimental Botany, 68, 139-148. https://doi.org/10.1016/j.envexpbot.2009.08.009
|
[29]
|
Pal, M., Horvath, E., Janda, T., Paldi, E. and Szalai, G. (2006) Physiological Changes and Defense Mechanisms Induced by Cadmium Stress in Maize. Journal of Plant Nutrition and Soil Science, 169, 239-246. https://doi.org/10.1002/jpln.200520573
|
[30]
|
Belimov, A.A., Malkov, N.V., Pushalsky, J.V., Tsyganov, V.E., Bodyagina, K.B., Safronova, V.I., Dietz, K.-J. and Tikhonovich, I.A. (2018) The Crucial Role of Roots in Increased Cadmium-Tolerance and Cd-Accumulation in the Pea Mutant SGECdt. Biologia Plantarum, 62, 543-550. https://doi.org/10.1007/s10535-018-0789-0
|
[31]
|
Parrotta, L., Guerriero, G., Sergeant, K., Cai, G. and Hausman, J.-F. (2015) Target or Barrier? The Cell Wall of Early- and Later-Diverging Plants vs. Cadmium Toxicity: Differences in the Response Mechanisms. Frontiers in Plant Science, 6, 133.
https://doi.org/10.3389/fpls.2015.00133
|
[32]
|
Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N.A. and Ahmad, P. (2014) Modulation of Plant Growth and Metabolism in Cadmium-Enriched Environments. Reviews of Environmental Contamination and Toxicology, 229, 51-88.
https://doi.org/10.1007/978-3-319-03777-6_4
|
[33]
|
Sadiq, R., Maqbool, N. and Haseeb, M. (2017) Ameliorative Effect of Chelating Agents on Photosynthetic Attributes of CD Stressed Sunflower. Agricultural Sciences, 8, 149-160. https://doi.org/10.4236/as.2016.82010
|
[34]
|
Guo, H., Hong, C., Chen, X., Xu, Y., Liu, Y., Jiang, D. and Zheng, B. (2016) Different Growth and Physiological Responses to Cadmium of the Three Miscanthus Species. PLoS ONE, 11, e0153475. https://doi.org/10.1371/journal.pone.0153475
|
[35]
|
Siddhu, G., Sirohi, D.S., Kashyap, K., Khan, I.A. and Khan, M.A. (2008) Toxicity of Cadmium on the Growth and Yield of Solanum melongena L. Journal of Environmental Biology, 29, 853-857.
|
[36]
|
Amosova, N.V., Tazina, I.A. and Synzynys, B.I. (2003) Effect of Phytotoxicity and Genotoxicity of Iron, Cobalt, and Nickel Ions on Physiological Parameters in Plants of Different Species. Journal of Biology, 5, 49-54.
|
[37]
|
Chen, C., Huang, D. and Liu, J. (2009) Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. Clean Soil Air Water, 37, 304-313.
https://doi.org/10.1002/clen.200800199
|
[38]
|
Sharma, P. and Dubey, R.S. (2005) Lead Toxicity in Plants. Brazilian Journal of Plant Physiology, 17, 35-52. https://doi.org/10.1590/S1677-04202005000100004
|
[39]
|
Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. and Forestier, C. (2002) Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. The Plant Journal, 32, 539-548.
https://doi.org/10.1046/j.1365-313X.2002.01442.x
|
[40]
|
Page, V. and Feller, U. (2015) Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agron, 5, 447-463.
https://doi.org/10.3390/agronomy5030447
|
[41]
|
Kothe, E. and Verma, A. (2012) Bio-Geo Interactions in Metal-Contaminated Soils. Springer, Berlin, 426. https://doi.org/10.1007/978-3-642-23327-2
|
[42]
|
Uzu, G., Sauvain, J.J., Baeza-Squiban, A., Hohl, M., Val, S. and Dumat, C. (2011) In Vitro Assessment of the Pulmonary Toxicity and Gastric Availability of Lead-Rich Particles from a Lead Recycling Plant. Environmental Science Technology, 45, 7888-7895. https://doi.org/10.1021/es200374c
|
[43]
|
Kumar, B., Smita, K. and Flores, L.C. (2017) Plant Mediated Detoxification of Mercury and Lead. Arabian Journal of Chemistry, 10, S2335-S2342.
https://doi.org/10.1016/j.arabjc.2013.08.010
|
[44]
|
Malecka, A., Piechalak, A., Morkunas, I. and Tomaszewska, B. (2008) Accumulation of Lead in Root Cells of Pisum sativum. Acta Physiologiae Plantarum, 30, 629-637.
https://doi.org/10.1007/s11738-008-0159-1
|
[45]
|
Gichner, T., Nidar, I. and Szakova, J. (2008) Evaluation of DNA Damage and Mutagenicity Induced by Lead in Tobacco Plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 652, 186-190.
https://doi.org/10.1016/j.mrgentox.2008.02.009
|
[46]
|
Gupta, D.K., Nicoloso, F.T., Schetinger, M.R.C., Rossato, L.V., Pereira, L.B., Castro, G.Y. and Tripathi, R.D. (2009) Antioxidant Defense Mechanism in Hydroponically Grown Zea mays Seedlings under Moderate Lead Stress. Journal of Hazardous Materials, 172, 479-484. https://doi.org/10.1016/j.jhazmat.2009.06.141
|
[47]
|
Jiang, W. and Liu, D. (2010) PB-Induced Cellular Defense System in the Root Meristematic Cells of Allium sativum L. Plant Biology, 10, 40.
https://doi.org/10.1186/1471-2229-10-40
|
[48]
|
Verbruggen, N., Hermans, C. and Schat, H. (2009) Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytologist, 181, 759-776.
https://doi.org/10.1111/j.1469-8137.2008.02748.x
|
[49]
|
Liao, Y.C., Chang-Chien, S.W., Wang, M.C., Shen, Y., Huang, P.L. and Das, B. (2006) Effect of Transpiration on Pb Uptake by Lettuce on Water Soluble Low Molecular Weight Organic Acids in Rhizosphere. Chemosphere, 65, 343-351.
https://doi.org/10.1016/j.chemosphere.2006.02.010
|
[50]
|
Clemens, S., Palmgren, M.G. and Kramer, U. (2002) A Long Way Ahead: Understanding an Engineering Plant Metal Accumulation. Trends in Plant Science, 7, 309-315. https://doi.org/10.1016/S1360-1385(02)02295-1
|
[51]
|
Fontes, R.L.F., Pereira, J.M.N. and Neves, J.C.L. (2014) Uptake and Translocation of Cd and Zn in Two Lettuce Cultivars. Annals of the Brazilian Academy of Sciences, 86, 907-922. https://doi.org/10.1590/0001-37652014117912
|
[52]
|
Ronzan, M., Piacentini, D., Fattorini, L., Rovere, F.D., Eiche, E., Riemann, M., Altamura, M.M. and Falasca, G. (2018) Cadmium and Arsenic Affect Root Development in Oryza sativa L. Negatively Interacting with Auxin. Environmental and Experimental Botany, 151, 64-75. https://doi.org/10.1016/j.envexpbot.2018.04.008
|