Effect of Protein Adsorption onto the Dissolution of Silicon-Substituted Hydroxyapatite


Several authors have shown the beneficial role to incorporate silicon into hydroxyapatite lattice, although, the mechanism behind the enhanced bioactivity of this Si-hydroxyapatite (Si-HA) is poorly understood. The incorporation of Si into the HA lattice alters the surface charge of HA, leading to more negative values. Due to the importance of the surface properties on the interaction between biomaterials, physiological fluids, and the host tissue, it is important to further characterize the surface of Si-HA by determining its surface energy and wettability. Our results showed that the incorporation of Si increased the hydrophilicity of HA, leading to a higher interfacial tension. Another important property for osteointegration is the formation of an apatite layer. The dissolution of Si-HA in the presence of serum-free simulated body fluid (SBF) started at early time points and using atomic force microscopy (AFM) it was possible to observe the dissolution at the grain boundaries and grains, therefore an apatite layer was formed in a short period of time. As the dissolution-precipitation process is much more complex in vivo, we tried to mimic the initial stages of the in vivo reaction by incubating the Si-HA in serum-SBF. It was shown that the dissolution kinetics in serum-SBF was slower when compared to the dissolution in serum free-SBF. At the same time point, no significant dissolution features were observed or apatite layer was visualized. The phase imaging AFM indicated the presence of a layer on top of these materials that could be a proteinaceous layer, as XPS analysis detected an increase on the concentration of nitrogen on the surface of the samples incubated in the presence of proteins.

Share and Cite:

C. Botelho, R. Brooks, M. Kanitakahara, C. Ohtsuki, S. Best, M. Lopers, N. Rushton, W. Bonfield and J. Santos, "Effect of Protein Adsorption onto the Dissolution of Silicon-Substituted Hydroxyapatite," Journal of Encapsulation and Adsorption Sciences, Vol. 1 No. 4, 2011, pp. 72-79. doi: 10.4236/jeas.2011.14010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Carlisle, “Essentiality and Function of Silicon,” Bio-Chemistry of Silicon and Related Problems, 1977.
[2] K. Schwarz and D. Milne, “Growth-Promoting Effects of Silicon in Rats,” Nature, 1972, pp. 239-333.
[3] K. Schwarz, “Significance and Functions of Silicon in Warm-Blooded Animals,” Biochemistry of silicon and related problems, Lidingo, Sweden, 1977.
[4] N. Patel, S. Best, I. R. Gibson, K. Hing, E. Damien and W. Bonfield, “A Comparative Study on the in vivo Behaviour of Hydroxyapatite and Silicon Substituted Hydroxyapatite Granules,” Journal of Materials Science: Materials in Medicine, Vol. 13, No. 12, 2002, pp. 1199-1206. doi:10.1023/A:1021114710076
[5] I. R. Gibson, S. M. Best and W. Bonfield, “Chemical Characterization of Silicon-Substituted Hydroxyapatite,” Journal of Biomedical Materials Research, Vol. 44, 1999, pp. 422-428. doi:10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
[6] I. R. Gibson, J. Huang, S. M. Best and W. Bonfield, “Enhanced in vitro Cell Activity and Surface Apatite Layer Formation on Novel Silicon-Substituted Hydroxyapatites,” In: H. G. Y. T. Ohgushi H, Ed., Bioceramics 12, World Scientific Publishing Co. Pte. Ltd, Nara, 1999, pp. 191-194.
[7] C. M. Botelho, M. A. Lopes, I. R. Gibson, S. M. Best and J. D. Santos, “Structural Analysis of Silicon-Substituted Hydroxyapatite: Zeta Potential and X-ray Photoelectron Spectroscopy (XPS). Journal of Materials Science-Materials in Medicine, Vol. 57, No. 13, 2002, pp. 1123-1127. doi:10.1023/A:1021177601899
[8] C. M. Botelho, D. Stokes, R. Brooks, S. M. Best, M. A. Lopes and J. D. Santos, “Effect of Human Serum Proteins on the Surface of Pure HA and Si-Substituted HA: AFM and ESEM Studies,” Materials Science Forum, Vol. 455-456, 2003, pp. 378-382. doi:10.4028/www.scientific.net/MSF.455-456.378
[9] C. M. Botelho, R. A. Brooks, M. A. Lopes, J. D. Santos, S. M. Best and W. Bonfield, “Biological and Physical-Chemical Characterization of Phase Pure HA and Si-Substituted Hydroxyapatite by Different Microscopy Techniques,” Key Engineering Materials, Vol. 254, No. 2, 2004, pp. 845-848. doi:10.4028/www.scientific.net/KEM.254-256.845
[10] C. M. Botelho, R. Brooks, T. Kawai, S. Ogata, C. Ohtsuki, M. A. Lopes, S. M. Best, J. D. Santos, N. Rushton and W. Bonfield, “In vitro Analysis of Proteins Adhesion to Phase Pure Hydroxyapatite and Silicon-Substituted Hydroxyapatite,” Key Engineering Materials, Vol. 17, 2005, pp. 461-464. doi:10.4028/www.scientific.net/KEM.284-286.461
[11] I. R. Gibson, S. Best and W. Bonfield, “Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite,” Journal of American Ceramics Society, Vol. 85, No. 11, 2002, pp. 2771-2777. doi:10.1111/j.1151-2916.2002.tb00527.x
[12] L. L. Hench and J. Wilson, “Introduction, In: An Introduction to Bioceramics,” World Scientific, Singapore, 1993.
[13] S. G. Eskin, T. A. Horbett, L. McIntire, R. Mitchell, B. D. Ratner, F. Schoen and Y. Andrew, “Part II Biology, Biochemistry and Medicine: Some Background Concepts,” In: B. D. Ratner, Ed., Biomaterials Sciences, Elsevier Academic Press, 2004, pp. 236-292.
[14] D. Lyman, L. Metcalf, D. Albo, K. Richards and J. Lamb, “The Effect of Chemical Structure and Surface Properties of Synthetic Polymers on the Coagulation of Blood: In vivo Adsorption of Proteins on Polymer Surfaces,” Transactions American Society for Artificial Internal Organs, Vol. 20, 1974, pp. 474-478.
[15] T. A. Horbett, “Part II Biology, Biochemistry and Medicine: The Role of Adsorbed Proteins in Tissue Response to Biomaterials,” In: B. D. Ratner, Ed., Biomaterials Sciences, Elsevier Academic Press, 2004, pp. 237-245.
[16] W. Norde and J. Lyklema, “BSA Structural Changes during Homomolecular Exchange between the Adsorbed and the Dissolved States,” Journal of Biotechnology, Vol. 79, 2000, pp. 259-268. doi:10.1016/S0168-1656(00)00242-X
[17] N. Holland and R. Marchant, “Individual Plasma Proteins Detected on Rough Biomaterials by Phase Imaging AFM,” Journal of Biomedical Materials Research, Vol. 51, 2000, pp. 307-315. doi:10.1002/1097-4636(20000905)51:3<307::AID-JBM3>3.0.CO;2-H
[18] L. Vroman and A. Adams, “Why Plasma Proteins Interact at the Interfaces,” In: T. A. Horbett and J. Brash, Eds., Proteins at the Interfaces: Physicochemical and Biochemical Studies, ACS Symposion, Washington, 1986, pp. 154-164.
[19] G. Daculsi, P. Pilet, M. Cottrel and G. Guicheux, “Role of Fibronectin during Biological Apatite Crystal Nucleation: Ultrastructural Characterization,” Journal of Biomedical Materials Research, Vol. 2, No. 47, 1999, pp. 228-233. doi:10.1002/(SICI)1097-4636(199911)47:2<228::AID-JBM13>3.0.CO;2-Z
[20] A. Rosengren, S. Oscarsson, M. Mazzocchi, A. Krajewski and A. Ravagliolo, “Protein Adsorption onto Two Bioactive Glass-Ceramics,” Biomaterials, Vol. 24, No. 3, 2003, pp. 147-155. doi:10.1016/S0142-9612(02)00272-7
[21] D. MacDonald, N. Deo, B. Markovic, M. Stranick and P. Somasundaran, “Adsorption and Dissolution Behaviour of Human Plasma Fibronectin on Thermally and Chemically Modified Titanium Dioxide Particles,” Biomaterials, Vol. 23, No. 4, 2002, pp. 1269-1279. doi:10.1016/S0142-9612(01)00317-9
[22] M. Lapin, R. Warocquier-Clérout, C. Legris, M. Degrange and M. Luizard, “Correlation between Roughness and Wettability, Cell Adhesion and Cell Migration,” Journal of Biomedical Materials Research, Vol. 36, No. 1, 1997, pp. 99-108. doi:10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E
[23] D. F. Williams and R. Bagnall, “Adsorption of Proteins on Polymers and Its Role in the Response of Soft Tissue,” In: D. Williams, Ed., Fundamental Aspects of Biocompatibility, CRC Press, Raton, Florida, 1998, pp. 113-127.
[24] T. Groth, G. Altankov, A. Kostadinova, N. Krasteva, W. Albrecht and D. Paul, “Altered Vitronectin Receptor (av integrin) Function in Fibroblasts Adhering on Hydrophobic Glass,” Journal of Biomedical Materials Research, Vol. 44, 1999, pp. 341-351. doi:10.1002/(SICI)1097-4636(19990305)44:3<341::AID-JBM13>3.0.CO;2-H
[25] M. Adao, B. Saramago and A. Fernandes, “Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements,” Journal of Colloid and Interface Science, Vol. 217, No. 1, 1999, pp. 94-106. doi:10.1006/jcis.1999.6279
[26] T. Young, “Miscellaneous Works,” London, Vol. 1, No. 418, 1835.
[27] J. H. Hildebrand, “Solubility XII. Regular Solutions,” Journal of American Chemistry Society, Vol. 57, No. 66, 1929.
[28] G. Scatchard, “Equilibrium in Non-Electrolyte Mixtures,” Chemical Reviews, Vol. 44, No. 1, 1949, pp. 7-35. doi:10.1021/cr60137a002
[29] D. Owens and R. Wendt, “Estimation of the Surface Free Energy of Polymers,” Journal of Applied Polymer Science, Vol. 13, 1969, p. 1741. doi:10.1002/app.1969.070130815
[30] S. Wu, “Polymer Interface and Adhesion,” New York, 1982.
[31] C. Van Oss, M. Chaudhury and R. Good, “Interfacial Lifshitz-Van der Waals and Polar Interactions in Macroscopic Systems,” Chemical Reviews, Vol. 88, No. 6, 1988, pp. 927-941. doi:10.1021/cr00088a006
[32] L. J. Ha, S. Best, J. D. Santos, I. R. Gibson and W. Bonfield, “Silicon-Substituted Apatites and Process for the Preparation Thereof,” Worldwide Patent, 1999.
[33] M. Bale, L. Wohlfahrt, D. Mosher, B. Tomasini and R. Sutton, “Identification of Vitronectin as a Major Plasma Protein Adsorbed on Polymer Surfaces of Different Copolymer Composition,” Blood, Vol. 74, 1989, pp. 2698-2706.
[34] P. Underwood, J. Steele and B. Dalton, “Effects of Polystyrene Surface Chemistry on the Biological Activity of Solid Phase Fibronectin and Vitronectin, Analysed with Monoclonal Antibodies,” Journal of Cell Biology, Vol. 104, 1993, pp. 793-803.
[35] A. Serro, A. Fernandes and B. Saramago, “Dynamic Interfacial Behaviour of Bovine Serum Albumin Solutions on Titanium Surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 125, 1997, pp. 209-219. doi:10.1016/S0927-7757(97)00017-4
[36] P. Cacciafesta, K. Hallam, A. Watkinson, G. Allen, M. Miles and K. Jandt, “Visualization of Human Plasma Fibrinogen Adsorbed on Titanium Implant Surfaces with Different Roughness,” Surface Science, Vol. 491, 2001, pp. 405-420. doi:10.1016/S0039-6028(01)01303-6
[37] K. Jandt, “Developments and Perspectives of Scanning Probe Microscopy (SPM) on Organic Materials Systems,” Materials Science and Engineering, Vol. R21, 1998, pp. 221-295.
[38] C. Putman, K. Van der Werf, B. de Grooth, H. Van Hulst and J. Greve, “Tapping Mode Atomic Force Microscopy in Liquid,” Applied Physics Letters, Vol. 63, 1994, pp. 2454-2456. doi:10.1063/1.111597
[39] J. Cleveland, B. Anazykowski, A. Schimd and V. Elings, “Energy Dissipation in Tapping-Mode Atomic Force Microscopy,” Applied Physics Letters, Vol. 72, 1998, pp. 2613-2615. doi:10.1063/1.121434
[40] J. Andrade and V. Hlady, “Protein Adsorption and Materials Biocompatibility: A Tutorial Review and Suggested Hypotheses,” Advances in Polymer Science, 1986, pp. 1-58.
[41] H. Aoki, “Science and Medical Applications of Hydroxyapatite,” Takayama Press, Tokyo, 1991.
[42] J. Davies, “The Importance and Measurement of Surface Charge Species in Cell Behaviour Interface,” In B. D. Ratner, Ed., Surface Characterization of Biomaterials, Elsevier, New York, 1988, pp. 219-234.
[43] L. L. Hench and E. C. Ethridge, “Biomaterials: An Interfacial Approach,” New York Academic, New York, 1982.
[44] M. Lopes, F. J. Monteiro, J. D. Santos, A. Serro and B. Saramago, “Hydrophobicity, Surface Tension and Zeta Potential Measurements of Glass Reinforced Hydroxyapatote Composites,” Journal of Biomedical Materials Research, Vol. 45, 1999, pp. 370-375. doi:10.1002/(SICI)1097-4636(19990615)45:4<370::AID-JBM12>3.0.CO;2-0
[45] M. Ferraz, F. J. Monteiro, A. Serro, B. Saramago, I. R. Gibson and J. D. Santos, “Effect of Chemical Composition on Hydrophobicity and Zeta Potential of Plasma Sprayed HA/-CaO-P2O5 Glass Coatings,” Biomaterials, Vol. 22, 2001, pp. 3105-3112. doi:10.1016/S0142-9612(01)00059-X
[46] M. Amaral, M. Lopes, J. Santos and R. Silva, “Wettability and Surface Charge of Si3N4-Bioglass Composites in Contact with Simulated Physiological Liquids,” Biomaterials, Vol. 23, No. 20, 2002, pp. 4041-4048.
[47] R. Rohanizadeh, M. Padrines, J. Bouler, D. Couchourel, Y. Fortun and G. Daculsi, “Apatite Precipitation after Incubation of Biphasic Calcium-Phosphate Ceramic in Various Solutions: Influence of Seed Species and Proteins,” Journal of Biomedical Materials Research, Vol. 20, 1998, pp. 2287-2303.
[48] E. Kaufmann, P. Ducheyne, S. Radin, D. Bonnel and R. Composto, “Initial Events at the Bioactive Glass Surface in Contact with a Protein, Containing Solutions,” Journal of Biomedical Materials Research, Vol. 52, 2000, pp. 825-830. doi:10.1002/1097-4636(20001215)52:4<825::AID-JBM28>3.0.CO;2-M

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.