On Fuzzy Random-Valued Optimization
Monga K. Luhandjula
DOI: 10.4236/ajor.2011.14030   PDF    HTML     4,499 Downloads   8,542 Views   Citations

Abstract

In this paper, we propose a novel approach for Fuzzy random-valued Optimization. The main idea behind our approach consists of taking advantage of interplays between fuzzy random variables and random sets in a way to get an equivalent stochastic program. This helps avoiding pitfalls due to severe oversimplification of the reality. We consider a numerical example that shows the efficiency of the proposed method.

Share and Cite:

M. Luhandjula, "On Fuzzy Random-Valued Optimization," American Journal of Operations Research, Vol. 1 No. 4, 2011, pp. 259-267. doi: 10.4236/ajor.2011.14030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Bandemer and W. Gerlach, “Evaluating Implicit Functional Relationships from Fuzzy Observations,” Freiberger Forschungshefter, Vol. D170, 1985, pp. 101-118.
[2] C. M. Hwang, “A Theorem of Renewal Process for Fuzzy Random Variables and Its Application,” Fuzzy Sets and Systems, Vol. 116, No. 2, 2000, pp. 237-244. doi:10.1016/S0165-0114(98)00143-2
[3] M. K. Luhandjula, “Fuzzy Stochastic Linear Programming: Survey and Future Research Directions,” European Journal of Operational Research, Vol. 174, No. 3, 2006, pp. 1353-1367. doi:10.1016/j.ejor.2005.07.019
[4] H. Katagiri, E. B. Mermri, M. Sakawa, K. Kato and I. Nishizaki “A Possibilistic and Stochastic Programming Approach to Fuzzy Random MST Problems,” IEICE- Transactions on Information Systems, Vol. E88-D, No. 8, 2008, pp. 1912-1919.
[5] H. Katagiri, M. Sakawa, K. Kato and I. Nishizaki, “Interactive Multiobjective Fuzzy Random Linear Programming: Maximization of Possibility and Probability,” European Journal of Operational Research, Vol. 188, No. 2, 2008, pp. 530-539. doi:10.1016/j.ejor.2007.02.050
[6] B. Liu, “Fuzzy Roandom Chance-Constrained Programming,” IEEE Transactions on Fuzzy Systems, Vol. 9, No. 5, 2001, pp. 713-720. doi:10.1109/91.963757
[7] Y. K. Liu and B. Liu, “A Class of Fuzzy Random Optimization: Expected Value Models,” Information Sciences, Vol. 155, No. 1-2, 2002, pp. 89-102. doi:10.1016/S0020-0255(03)00079-3
[8] Y. K. Liu and B. Liu, “Fuzzy Random Programming with Equilibrium Chance Constraints,” Information Sciences, Vol. 170, No. 2-4, 2005, pp. 363-395. doi:10.1016/j.ins.2004.03.010
[9] E. E. Ammar, “On Fuzzy Random Multiobjective Quadratic Programming,” European Journal of Operational Research, Vol. 193, No. 2, 2009, pp. 329-341. doi:10.1016/j.ejor.2007.11.031
[10] Z. Zmeskel, “Value at Risk Methodology under Soft Conditions Approach (Fuzzy-Stochastic Approach),” European Journal of Operational Research, Vol. 161, No. 2, 2005, pp. 337-347. doi:10.1016/j.ejor.2003.08.048
[11] P. Dutta, D. Chakraborty and A. R. Roy, “A Single-Pe- riod Inventory Model with Fuzzy Random Variable Demand,” Mathematical and Computer Modelling, Vol. 41, No. 8-9, 2005, pp. 915-922. doi:10.1016/j.mcm.2004.08.007
[12] F. Ben Abdelaziz, L. Enneifar and J. M. Martel, “A Multiobjective Fuzzy Stochastic Program for Water Resource Optimization: The Case of Lake Management,” 2005. http://www.sharjah.ac.ae/academi/
[13] M. K. Luhandjula, “Optimization under Hybrid Uncertainty,” Fuzzy Sets and Systems, Vol. 146, No. 2, 2004, pp. 187-203. doi:10.1016/j.fss.2004.01.002
[14] C. Mohan and H. T. Nguyen, “An Interactive Satisfying Method for Solving Multiobjective Mixed Fuzzy Stochastic Programming Problems,” Fuzzy Sets and Systems, Vol. 117, No. 1, 2001, pp. 61-79. doi:10.1016/S0165-0114(98)00269-3
[15] S. Nanda, G. Panda and J. Dash, “A New Solution Method for Fuzzy Chance Constrained Programming Problem,” Fuzzy Optimization and Decision Making, Vol. 5, No. 4, 2006, pp. 355-370. doi:10.1007/s10700-006-0018-8
[16] W. M. Kirby, “Paradigm Change in Operations Research: Thirty Years of Debate,” Operations Research, Vol. 55, No. 1, 2008, pp. 1-13. doi:10.1287/opre.1060.0310
[17] R. Kruze and K. D. Meyer, “Statistics with Vague Data,” Reidel, Dordrecht, 1987. doi:10.1007/978-94-009-3943-1
[18] I. Moklanov, “Theory of Random Sets,” Springer, New York, 2005.
[19] G. Matheron, “Random Sets and Integral Geometry,” John Wiley & Sons, New York, 1975.
[20] D. Dubois and H. Prade, “Fuzzy Sets and Systems: Theory and Applications,” Academic Press, New York, 1980.
[21] J. Bán, “Radon-Nikodyym Theorem and Conditional Expectation of Fuzzy-Valued Measures and Variables,” Fuzzy Sets and Systems, Vol. 34, No. 3, 1990, pp. 383- 392. doi:10.1016/0165-0114(90)90223-S
[22] E. P. Klement, M. L. Puri and D. A. Ralescu, “Limit Theorems for Fuzzy Random Variables,” Proceedings of the Royal Society A, Vol. 407, No. 1832, 1986, pp. 171- 182. doi:10.1098/rspa.1986.0091
[23] C. X. Wu and M. Ma, “Embedding Problem of Fuzzy Number Space,” Fuzzy Sets and Systems, Vol. 44, No. 1, 1991, pp. 33-38. doi:10.1016/0165-0114(91)90030-T
[24] H. C. Wu, “Evaluate Fuzzy Optimization Problems Based on Biobjective Programming Problems,” Computer and Mathematics with Applications, Vol. 47, No. 6-7, 2004, pp. 893-902. doi:10.1016/S0898-1221(04)90073-9
[25] P. Kall, “Stochastic Linear Programming,” Springer, New York. doi:10.1007/978-3-642-66252-2
[26] S. Vajda, “Probabilistic Programming,” Academic Press, New York, 1972.
[27] G. J. Klir, “Principles of Uncertainty: What Are They? Why do We Need Them?” Fuzzy Sets and Systems, Vol. 74, No. 1, 1995, pp. 13-31. doi:10.1016/0165-0114(95)00032-G
[28] J. Li, J. Xu and M. Gen, “A Class of Multiobjective Linear Programming Model with Fuzzy Random Coefficients,” Mathematical and Computer Modelling, Vol. 44, No. 11-12, 2008, pp. 1097-1113. doi:10.1016/j.mcm.2006.03.013
[29] V. H. Nguyen, “Solving Linear Programming Problems under Fuzziness and Randomness Environment Using Attainment Values,” Information Sciences, Vol. 177, No. 14, 2007, pp. 2971-2984. doi:10.1016/j.ins.2007.01.032
[30] K. Glashoff and S. A. Gustafson, “Linear Optimization and Approximation,” Springer-Verlag, Berlin, 1983. doi:10.1007/978-1-4612-1142-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.