Degradation of naturally occurring and engineered antimicrobial peptides by proteases
Bernard J. Moncla, Kara Pryke, Lisa Cencia Rohan, Phillip W. Graebing
DOI: 10.4236/abb.2011.26059   PDF    HTML     5,631 Downloads   10,758 Views   Citations


We hypothesized that current antimicrobial peptides should be susceptible to proteolytic digestion. The antimicrobial peptides: Griffithinsin, RC-101, LL-37, LSA-5, PSC-RANTES and DJ007 were degraded by commercially available proteases. Two different species of anaerobic vaginal flora, Prevotella bivia and Porphyromonas asaccharolytica also degraded the materials. Griffithsin was resistant to digestion by 8 of the 9 proteases and the bacteria while LL-37 was the most sensitive to protease digestion. These data suggests most of the molecules may not survive for very long in the proteolytic rich environments in which they are intended to function.

Share and Cite:

Moncla, B. , Pryke, K. , Rohan, L. and Graebing, P. (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Advances in Bioscience and Biotechnology, 2, 404-408. doi: 10.4236/abb.2011.26059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Deslouches, B., Phadke, S.M., Lazarevic, V., Cascio, M., Islam, K., Montelaro, R.C., et al. (2005). De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrobial Agents and Chemotherapy, 49, 316-322. doi:10.1128/AAC.49.1.316-322.2005
[2] Lim, J.K., Lu, W., Hartley, O. and DeVico, A.L. (2006) N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. Journal Leukocyte Bioliology, 80, 1395- 1404. doi:10.1189/jlb.0406290
[3] Oh, J.E., Hong, S.Y. and Lee, K.H. (1999) Structure- activity relationship study: Short antimicrobial peptides. Journal Peptide Ressearch, 53, 41-46. doi:10.1111/j.1399-3011.1999.tb01615.x
[4] Patton, D.L., Cosgrove Sweeney, Y.T., McCarthy, T.D. and Hillier, S.L. (2006) Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrobial Agents and Chemotherapy, 50, 1696-1700. doi:10.1128/AAC.50.5.1696-1700.2006
[5] Potempa, J. and Pike, R.N. (2009) Corruption of Innate Immunity by Bacterial Proteases. Journal of Innate Immunity, 1, 70-87. doi:10.1159/000181144
[6] Howe, L., Wiggins, R., Soothill, P. W., Millar, M.R., Horner, P.J. and Corfield, A.P. (1999) Mucinase and sialidase activity of the vaginal microflora: implications for the pathogenesis of preterm labour. International Journal of STD and AIDS, 10, 442-447. doi:10.1258/0956462991914438
[7] Bernardis, F.D., Agatensi, L., Ross, I.K., Emerson, G.W., Lorenzini, R. and Sullivan, P.A., et al. (1990) Evidence for a Role for Secreted Aspartate Proteinase of Candida albicans in Vulvovaginal Candidiasis. The Journal of Infectious Diseases, 161, 1276-1283. doi:10.1093/infdis/161.6.1276
[8] Shaw, J.L.V., Petraki, C., Watson, C., Bocking, A. and Diamandis, E.P. (2008) Role of tissue kallikrein-related peptidases in cervical mucus remodeling and host defense. Biological Chemistry, 389, 1513-1522. doi:10.1515/BC.2008.171
[9] Steffen, H., Rieg, S., Wiedemann, I., Kalbacher, H., Deeg, M., Sahl, H.G., et al. (2006) Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrobial Agents and Chemotherapy, 50, 2608-2620. doi:10.1128/AAC.00181-06
[10] Blake, M., Holmes, K.K. and Swanson, J. (1979) Studies on gonococcus infection. XVII. Igaa? cleaving protease in vaginal washings from women with gonorrhea. The Journal of Infectious Diseases, 139, 89-92. doi:10.1093/infdis/139.1.89
[11] Katz, F.N., Rothman, J.E., Lingappa, V.R., Blobel, G. and Lodish, H.F. (1977). Membrane assembly in vitro: Synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proceedings of the National Academy of Sciences of the United States of America, 74, 3278-3282. doi:10.1073/pnas.74.8.3278
[12] Kaufman, E. and Lamster, I.B. (2000) Analysis of saliva for periodontal diagnosis. Journal of Clinical Periodontology, 27, 453-465. doi:10.1034/j.1600-051x.2000.027007453.x
[13] Braham, P.H. and Moncla, B.J. (1992) Rapid presumptive identification and further characterization of Bacteroides forsythus. Journal of clinical microbiology, 30, 649-654.
[14] Moncla, B.J., Braham, P., Rabe, L.K. and Hillier, S.L. (1991) Rapid presumptive identification of black-pigmented gram-negative anaerobic bacteria by using 4- methylumbelliferone derivatives. Journal of clinical microbiology, 29, 1955-1958.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.