[1]
|
Povsic, T.J., Sloane, R., Green, J.B., Zhou, J., Pieper, C.F., Pearson, M.P., Peterson, E.D., Cohen, H.J. and Morey, M.C. (2013) De-pletion of Circulating Progenitor Cells Precedes overt Diabetes: A Substudy from the VA Enhanced Fitness Trial. Journal of Diabetes and Its Complications, 27, 633-636.
https://doi.org/10.1016/j.jdiacomp.2013.08.004
|
[2]
|
Harfouche, G. and Martin, M.T. (2010) Response of Normal Stem Cells to Ionizing Radiation: A Balance between Homeostasis and Genomic Stability. Mutation Research/Reviews in Mutation Research, 704, 167-174.
https://doi.org/10.1016/j.mrrev.2010.01.007
|
[3]
|
Ahmed, A.S., Sheng, M.H., Wasnik, S., Baylink, D.J. and Lau. K.W. (2017) Effect of Aging on Stem Cells. World Journal of Experimental Medicine, 7, 1-10.
https://doi.org/10.5493/wjem.v7.i1.1
|
[4]
|
Wahlestedt, M., Pronk, C.J. and Bryder, D. (2015) Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation. STEM CELLS Translational Medicine, 4, 186-194. https://doi.org/10.5966/sctm.2014-0132
|
[5]
|
Lo, R.Y. (2017) The Borderland between Normal Aging and Dementia. Tzu-Chi Medical Journal, 29, 65-71.
|
[6]
|
Cheng, Y., Schwartz, J., Sparrow, D., Aro, A., Weiss, S.T. and Hu, H. (2001) Bone Lead and Blood Lead Levels in Relation to Baseline Blood Pressure and the Prospective Development of Hypertension: The Normative Aging Study. American Journal of Epidemiology, 153, 164-171. https://doi.org/10.1093/aje/153.2.164
|
[7]
|
Kumar, A. and Foster, T.C. (2007) Neurophysiology of Old Neurons and Synapses, In: Riddle, D.R., Ed., Brain Aging: Models, Methods, and Mechanisms, CRC Press, Boca Raton. https://doi.org/10.1201/9781420005523.ch10
|
[8]
|
Ullah, M. and Sun, Z. (2018) Stem Cells and Anti-Aging Genes: Double-Edged Sword—Do the Same Job of Life Extension. Stem Cell Research & Therapy, 9, 3.
https://doi.org/10.1186/s13287-017-0746-4
|
[9]
|
Grade, S. and Gotz, M. (2017) Neuronal Replacement Therapy: Previous Achievements and Challenges Ahead. NPJ Regenerative Medicine, 2, Article No. 29.
https://doi.org/10.1038/s41536-017-0033-0
|
[10]
|
Okere, B., Lucaccioni, L., Dominici, M. and Iughetti, L. (2016) Cell Therapies for Pancreatic Beta-Cell Replenishment. Italian Journal of Pediatrics, 42, 62.
https://doi.org/10.1186/s13052-016-0273-4
|
[11]
|
Petersen, G.F. and Strappe, P.M. (2016) Generation of Diverse Neural Cell Types through Direct Conversion. World Journal of Stem Cells, 8, 32-46.
https://doi.org/10.4252/wjsc.v8.i2.32
|
[12]
|
Neves, J., Sousa-Victor, P. and Jasper, H. (2017) Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell, 20, 161-175.
https://doi.org/10.1016/j.stem.2017.01.008
|
[13]
|
Anastassova-Kristeva, M. (2003) The Origin and Development of the Immune System with a View to Stem Cell Therapy. Journal of Hematotherapy & Stem Cell Research, 12, 137-154. https://doi.org/10.1089/152581603321628287
|
[14]
|
Ummarino, D. (2017) Cell Therapy: Autologous Cardiac Stem Cells for Congenital HF. Nature Reviews Cardiology, 14, 128. https://doi.org/10.1038/nrcardio.2017.5
|
[15]
|
Xiao, L., Saiki, C. and Ide, R. (2014) Stem Cell Therapy for Central Nerve System Injuries: Glial Cells Hold the Key. Neural Regeneration Research, 9, 1253-1260.
https://doi.org/10.4103/1673-5374.137570
|
[16]
|
Park, Y.B., Ha, C.W., Rhim, J.H. and Lee, H.J. (2017) Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. The American Journal of Sports Medicine, 46, 2540-2552.
|
[17]
|
Bhagavati, S. (2008) Stem Cell Based Therapy for Skeletal Muscle Diseases. Current Stem Cell Research & Therapy, 3, 219-228.
https://doi.org/10.2174/157488808785740343
|
[18]
|
Beerman, I. and Rossi, D.J. (2015) Epigenetic Control of Stem Cell Potential during Homeostasis, Aging, and Disease. Cell Stem Cell, 16, 613-625.
https://doi.org/10.1016/j.stem.2015.05.009
|
[19]
|
Giri, T.K., Alexander, A., Agrawal, M., Saraf, S., Saraf, S. and Ajazuddin (2018) Current Status of Stem Cell Therapies in Tissue Repair and Regeneration. Current Stem Cell Research & Therapy.
https://doi.org/10.2174/1574888X13666180502103831
|
[20]
|
Kristjansson, B. and Honsawek, S. (2017) Mesenchymal Stem Cells for Cartilage Regeneration in Osteoarthritis. World Journal of Orthopedics, 8, 674-680.
https://doi.org/10.5312/wjo.v8.i9.674
|
[21]
|
Fishman, J.M., Tyraskis, A., Maghsoudlou, P., Urbani, L., Totonelli, G., Birchall, M.A. and De Coppi, P. (2013) Skeletal Muscle Tissue Engineering: Which Cell to Use? Tissue Engineering Part B: Reviews, 19, 503-515.
https://doi.org/10.1089/ten.teb.2013.0120
|
[22]
|
Chan, T.M., Harn, H.J., Lin, H.P., Chiu, S.C., Lin, P.C., Wang, H.I., Ho, L.I., Chuu, C.P., Chiou, T.W., Hsieh, A.C., Chen, Y.W., Ho, W.Y. and Lin, S.Z. (2014) The Use of ADSCs as a Treatment for Chronic Stroke. Cell Transplant, 23, 541-547.
https://doi.org/10.3727/096368914X678409
|
[23]
|
Garg, K. and Boppart, M.D. (1985) Influence of Exercise and Aging on Extracellular Matrix Composition in the Skeletal Muscle Stem Cell Niche. Journal of Applied Physiology, 121, 1053-1058.
|
[24]
|
Cesselli, D., Aleksova, A., Mazzega, E., Caragnano, A. and Beltrami, A.P. (2018) Cardiac Stem Cell Aging and Heart Failure. Pharmacological Research, 127, 26-32.
https://doi.org/10.1016/j.phrs.2017.01.013
|
[25]
|
Cheng, D., Wang, S., Jia, W., Zhao, Y., Zhang, F., Kang, J. and Zhu, J. (2017) Regulation of Human and Mouse Telomerase Genes by Genomic Contexts and Transcription Factors during Embryonic Stem Cell Differentiation. Scientific Reports, 7, Article No. 16444. https://doi.org/10.1038/s41598-017-16764-w
|
[26]
|
Mattiucci, D., Maurizi, G., Leoni, P. and Poloni, A. (2018) Aging- and Senescence-Associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes. Cell Transplant, 27, 754-764. https://doi.org/10.1177/0963689717745890
|
[27]
|
Parsons, X.H. (2013) Human Stem Cell Derivatives Retain More Open Epigenomic Landscape When Derived from Pluripotent Cells than from Tissues. Journal of Regenerative Medicine, 1, pii: 1000103.
|
[28]
|
Kramer, A. and Challen, G.A. (2017) The Epigenetic Basis of Hematopoietic Stem Cell Aging. Seminars in Hematology, 54, 19-24.
https://doi.org/10.1053/j.seminhematol.2016.10.006
|
[29]
|
Noguchi, H., Miyagi-Shiohira, C. and Nakashima, Y. (2018) Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 19, pii: E930.
|
[30]
|
Mortada, I. and Mortada, R. (2018) Epigenetic Changes in Mesenchymal Stem Cells Differentiation. European Journal of Medical Genetics, 61, 114-118.
https://doi.org/10.1016/j.ejmg.2017.10.015
|
[31]
|
Sharma, S. and Gurudutta, G. (2016) Epigenetic Regulation of Hematopoietic Stem Cells. International Journal of Stem Cells, 9, 36-43.
https://doi.org/10.15283/ijsc.2016.9.1.36
|
[32]
|
Han, J.W. and Yoon, Y.S. (2012) Epigenetic Landscape of Pluripotent Stem Cells. Antioxidants & Redox Signaling, 17, 205-223. https://doi.org/10.1089/ars.2011.4375
|
[33]
|
Horii, T. and Hatada, I. (2016) Regulation of CpG Methylation by Dnmt and Tet in Pluripotent Stem Cells. Journal of Reproduction and Development, 62, 331-335.
https://doi.org/10.1262/jrd.2016-046
|
[34]
|
Revuelta, M. and Matheu, A. (2017) Autophagy in Stem Cell Aging. Aging Cell, 16, 912-915. https://doi.org/10.1111/acel.12655
|
[35]
|
Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A.L., Sandri, M. and Munoz-Canoves, P. (2016) Autophagy Maintains Stemness by Preventing Senescence. Nature, 529, 37-42. https://doi.org/10.1038/nature16187
|
[36]
|
Ma, Y., Qi, M., An, Y., Zhang, L., Yang, R., Doro, D.H., Liu, W. and Jin, Y. (2018) Autophagy Controls Mesenchymal Stem Cell Properties and Senescence during Bone Aging. Aging Cell, 17.
|
[37]
|
Garcia-Prat, L., Munoz-Canoves, P. and Martinez-Vicente, M. (2016) Dysfunctional Autophagy Is a Driver of Muscle Stem Cell Functional Decline with Aging. Autophagy, 12, 612-613. https://doi.org/10.1080/15548627.2016.1143211
|
[38]
|
Gomez-Puerto, M.C., Folkerts, H., Wierenga, A.T., Schepers, K., Schuringa, J.J., Coffer, P.J. and Vellenga, E. (2016) Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34(+) Hematopoietic Stem-Progenitor Cells. Stem Cells, 34, 1651-1663. https://doi.org/10.1002/stem.2347
|
[39]
|
Rothe, K., Lin, H., Lin, K.B., Leung, A., Wang, H.M., Malekesmaeili, M., Brinkman, R.R., Forrest, D.L., Gorski, S.M. and Jiang, X. (2014) The Core Autophagy Protein ATG4B Is a Potential Biomarker and Therapeutic Target in CML Stem/Progenitor Cells. Blood, 123, 3622-3634. https://doi.org/10.1182/blood-2013-07-516807
|
[40]
|
Yang, M., Pi, H., Li, M., Xu, S., Zhang, L., Xie, J., Tian, L., Tu, M., He, M., Lu, Y., Yu, Z. and Zhou, Z. (2016) From the Cover: Autophagy Induction Contributes to Cadmium Toxicity in Mesenchymal Stem Cells via AMPK/FOXO3a/BECN1 Signaling. Toxicological Sciences, 154, 101-114. https://doi.org/10.1093/toxsci/kfw144
|
[41]
|
Garcia-Prat, L., Munoz-Canoves, P. and Martinez-Vicente, M. (2017) Monitoring Autophagy in Muscle Stem Cells. Methods in Molecular Biology, 1556, 255-280.
https://doi.org/10.1007/978-1-4939-6771-1_14
|
[42]
|
Cao, Y., Zhang, S., Yuan, N., Wang, J., Li, X., Xu, F., Lin, W., Song, L., Fang, Y., Wang, Z., Wang, Z., Zhang, H., Zhang, Y., Zhao, W., Hu, S., Zhang, X. and Wang, J. (2015) Hierarchal Autophagic Divergence of Hematopoietic System. The Journal of Biological Chemistry, 290, 23050-23063. https://doi.org/10.1074/jbc.M115.650028
|
[43]
|
Yang, S.R., Park, J.R. and Kang, K.S. (2015) Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 486263. https://doi.org/10.1155/2015/486263
|
[44]
|
Lleonart, M.E., Abad, E., Graifer, D. and Lyakhovich, A. (2017) Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxidants & Redox Signaling.
|
[45]
|
Song, S.H., Kim, K., Park, J.J., Min, K.H. and Suh, W. (2014) Reactive Oxygen Species Regulate the Quiescence of CD34-Positive Cells Derived from Human Embryonic Stem Cells. Cardiovascular Research, 103, 147-155.
https://doi.org/10.1093/cvr/cvu106
|
[46]
|
Matsuda, S., Nakagawa, Y., Kitagishi, Y., Nakanishi, A. and Murai, T. (2018) Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells, 7, E36.
|
[47]
|
Li, J., Zhao, Z., Liu, J., Huang, N., Long, D., Wang, J., Li, X. and Liu, Y. (2010) MEK/ERK and p38 MAPK Regulate Chondrogenesis of Rat Bone Marrow Mesenchymal Stem Cells through Delicate Interaction with TGF-Beta1/Smads Pathway. Cell Proliferation, 43, 333-343. https://doi.org/10.1111/j.1365-2184.2010.00682.x
|
[48]
|
Niu, Z., Mu, H., Zhu, H., Wu, J. and Hua, J. (2017) p38 MAPK Pathway Is Essential for Self-Renewal of Mouse Male Germline Stem Cells (mGSCs). Cell Proliferation, 50. https://doi.org/10.1111/cpr.12314
|
[49]
|
Mas-Bargues, C., Vina-Almunia, J., Ingles, M., Sanz-Ros, J., Gambini, J., Ibanez-Cabellos, J.S., Garcia-Gimenez, J.L., Vina, J. and Borras, C. (2017) Role of p16(INK4a) and BMI-1 in Oxidative Stress-Induced Premature Senescence in Human Dental Pulp Stem Cells. Redox Biology, 12, 690-698.
https://doi.org/10.1016/j.redox.2017.04.002
|
[50]
|
Stepanova, L. and Sorrentino, B.P. (2005) A Limited Role for p16Ink4a and p19Arf in the Loss of Hematopoietic Stem Cells during Proliferative Stress. Blood, 106, 827-832. https://doi.org/10.1182/blood-2004-06-2242
|
[51]
|
Chan, T.M., Lin, H.P. and Lin, S.Z. (2014) In Situ Altering of the Extracellular Matrix to Direct the Programming of Endogenous Stem Cells. Stem Cells, 32, 1989-1990. https://doi.org/10.1002/stem.1693
|
[52]
|
Syverud, B.C., Lee, J.D., VanDusen, K.W. and Larkin, L.M. (2014) Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. Journal of Regenerative Medicine, 3, pii: 117.
|
[53]
|
Qiu, X., Liu, S., Zhang, H., Zhu, B., Su, Y., Zheng, C., Tian, R., Wang, M., Kuang, H., Zhao, X. and Jin, Y. (2018) Mesenchymal Stem Cells and Extracellular Matrix Scaffold Promote Muscle Regeneration by Synergistically Regulating Macrophage Polarization toward the M2 Phenotype. Stem Cell Research & Therapy, 9, 88.
https://doi.org/10.1186/s13287-018-0821-5
|
[54]
|
Brzoska, E., Ciemerych, M.A., Przewozniak, M. and Zimowska, M. (2011) Regulation of Muscle Stem Cells Activation: The Role of Growth Factors and Extracellular Matrix. Vitamins and Hormones, 87, 239-276.
https://doi.org/10.1016/B978-0-12-386015-6.00031-7
|
[55]
|
Stearns-Reider, K.M., D’Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W.R., Vorp, D.A., Tsamis, A., Shinde, S., Zhang, C., Barchowsky, A., Rando, T.A., Tuan, R.S. and Ambrosio, F. (2017) Aging of the Skeletal Muscle Extracellular Matrix Drives a Stem Cell Fibrogenic Conversion. Aging Cell, 16, 518-528.
https://doi.org/10.1111/acel.12578
|
[56]
|
Suzuki, S., Narita, Y., Yamawaki, A., Murase, Y., Satake, M., Mutsuga, M., Okamoto, H., Kagami, H., Ueda, M. and Ueda, Y. (2010) Effects of Extracellular Matrix on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage: Utility for Cardiovascular Tissue Engineering. Cells Tissues Organs, 191, 269-280. https://doi.org/10.1159/000260061
|
[57]
|
Merritt, E.K., Cannon, M.V., Hammers, D.W., Le, L.N., Gokhale, R., Sarathy, A., Song, T.J., Tierney, M.T., Suggs, L.J., Walters, T.J. and Farrar, R.P. (2010) Repair of Traumatic Skeletal Muscle Injury with Bone-Marrow-Derived Mesenchymal Stem Cells Seeded on Extracellular Matrix. Tissue Engineering Part A, 16, 2871-2881.
https://doi.org/10.1089/ten.tea.2009.0826
|
[58]
|
Mendelsohn, A.R. and Larrick, J.W. (2013) Rejuvenation of Aging Hearts. Rejuvenation Research, 16, 330-332. https://doi.org/10.1089/rej.2013.1462
|
[59]
|
Ocampo, A., Reddy, P. and Belmonte, J.C.I. (2016) Anti-Aging Strategies Based on Cellular Reprogramming. Trends in Molecular Medicine, 22, 725-738.
https://doi.org/10.1016/j.molmed.2016.06.005
|
[60]
|
Wang, Y. and Xie, T. (2014) Extracellular, Stem Cells and Regenerative Ophthalmology. Journal of Glaucoma, 23, S30-S33.
https://doi.org/10.1097/IJG.0000000000000112
|
[61]
|
Bhattacharya, S., Gangaraju, R. and Chaum, E. (2017) Recent Advances in Retinal Stem Cell Therapy. Current Molecular Biology Reports, 3, 172-182.
|
[62]
|
Bengal, E., Perdiguero, E., Serrano, A.L. and Munoz-Canoves, P. (2017) Rejuvenating Stem Cells to Restore Muscle Regeneration in Aging. F1000Research, 6, 76.
https://doi.org/10.12688/f1000research.9846.1
|
[63]
|
Efimenko, A.Y., Kochegura, T.N., Akopyan, Z.A. and Parfyonova, Y.V. (2015) Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. BioResearch Open Access, 4, 26-38.
https://doi.org/10.1089/biores.2014.0042
|
[64]
|
Mimeault, M., Hauke, R. and Batra, S.K. (2007) Stem Cells: A Revolution in Therapeutics-Recent Advances in Stem Cell Biology and Their Therapeutic Applications in Regenerative Medicine and Cancer Therapies. Clinical Pharmacology & Therapeutics, 82, 252-264. https://doi.org/10.1038/sj.clpt.6100301
|
[65]
|
Bhere, D., Khajuria, R.K., Hendriks, W.T., Bandyopadhyay, A., Bagci-Onder, T. and Shah, K. (2018) Stem Cells Engineered During Different Stages of Reprogramming Reveal Varying Therapeutic Efficacies. Stem Cells, 36, 932-942.
https://doi.org/10.1002/stem.2805
|
[66]
|
Dai, X., Liu, P., Lau, A.W., Liu, Y. and Inuzuka, H. (2014) Acetylation-Dependent Regulation of Essential iPS-Inducing Factors: A Regulatory Crossroad for Pluripotency and Tumorigenesis. Cancer Medicine, 3, 1211-1224.
https://doi.org/10.1002/cam4.298
|
[67]
|
Snyder, E.Y. and Loring, J.F. (2005) A Role for Stem Cell Biology in the Physiological and Pathological Aspects of Aging. Journal of the American Geriatrics Society, 53, S287-S291. https://doi.org/10.1111/j.1532-5415.2005.53491.x
|
[68]
|
Wahlestedt, M. and Bryder, D. (2017) The Slippery Slope of Hemato-poietic Stem Cell Aging. Experimental Hematology, 56, 1-6.
https://doi.org/10.1016/j.exphem.2017.09.008
|
[69]
|
Guidi, N. and Geiger, H. (2017) Rejuvenation of Aged Hematopoietic Stem Cells. Seminars in Hematology, 54, 51-55.
https://doi.org/10.1053/j.seminhematol.2016.10.005
|
[70]
|
Laurenti, L., Sora, F., Piccirillo, N., Chiusolo, P., Cicconi, S., Rutella, S., Serafini, R., Garzia, M.G., Leone, G. and Sica, S. (2001) Immune Reconstitution after Autologous Selected Peripheral Blood Progenitor Cell Transplantation: Comparison of Two CD34+ Cell-Selection Systems. Transfusion, 41, 783-789.
https://doi.org/10.1046/j.1537-2995.2001.41060783.x
|
[71]
|
Wang, H., Pierce, L.J. and Spangrude, G.J. (2005) Lymphoid Potential of Primitive Bone Marrow Progenitors Evaluated in Vitro. Annals of the New York Academy of Sciences, 1044, 210-219. https://doi.org/10.1196/annals.1349.026
|
[72]
|
Redecke, V., Wu, R., Zhou, J., Finkelstein, D., Chaturvedi, V., High, A.A. and Hacker, H. (2013) Hematopoietic Progenitor Cell Lines with Myeloid and Lymphoid Potential. Nature Methods, 10, 795-803. https://doi.org/10.1038/nmeth.2510
|
[73]
|
Felfly, H. and Haddad, G.G. (2014) Hematopoietic Stem Cells: Potential New Applications for Translational Medicine. Journal of Stem Cells, 9, 163-197.
|
[74]
|
Bhatwadekar, A.D., Duan, Y., Korah, M., Thinschmidt, J.S., Hu, P., Leley, S.P., Caballero, S., Shaw, L., Busik, J. and Grant, M.B. (2017) Hematopoietic Stem/Progenitor Involvement in Retinal Microvascular Repair during Diabetes: Implications for Bone Marrow Rejuvenation. Vision Research, 139, 211-220.
https://doi.org/10.1016/j.visres.2017.06.016
|
[75]
|
Chen, C., Liu, Y., Liu, Y. and Zheng, P. (2009) mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells. Science Signaling, 2, ra75.
https://doi.org/10.1126/scisignal.2000559
|
[76]
|
Florian, M.C., Dorr, K., Niebel, A., Daria, D., Schrezenmeier, H., Rojewski, M., Filippi, M.D., Hasenberg, A., Gunzer, M., Scharffetter-Kochanek, K., Zheng, Y. and Geiger, H. (2012) Cdc42 Activity Regulates Hematopoietic Stem Cell Aging and Rejuvenation. Cell Stem Cell, 10, 520-530.
https://doi.org/10.1016/j.stem.2012.04.007
|
[77]
|
Chang, J., Wang, Y., Shao, L., Laberge, R.M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A. and Zhou, D. (2016) Clearance of Senescent Cells by ABT263 Rejuvenates Aged Hematopoietic Stem Cells in Mice. Nature Medicine, 22, 78-83. https://doi.org/10.1038/nm.4010
|
[78]
|
Metafuni, E., Chiusolo, P., Laurenti, L., Sora, F., Giammarco, S., Bacigalupo, A., Leone, G. and Sica, S. (2018) Allogeneic Hematopoietic Stem Cell Transplantation in Therapy-Related Myeloid Neoplasms (t-MN) of the Adult: Monocentric Observational Study and Review of the Literature. Mediterranean Journal of Hematology and Infectious Diseases, 10, e2018005. https://doi.org/10.4084/mjhid.2018.005
|
[79]
|
Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., Jovinge, S. and Frisen, J. (2009) Evidence for Cardiomyocyte Renewal in Humans. Science, 324, 98-102.
https://doi.org/10.1126/science.1164680
|
[80]
|
Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., Wu, T.D., Guerquin-Kern, J.L., Lechene, C.P. and Lee, R.T. (2013) Mammalian Heart Renewal by Pre-Existing Cardiomyocytes. Nature, 493, 433-436.
https://doi.org/10.1038/nature11682
|
[81]
|
Ahuja, P., Sdek, P. and MacLellan, W.R. (2007) Cardiac Myocyte Cell Cycle Control in Development, Disease, and Regeneration. Physiological Reviews, 87, 521-544.
https://doi.org/10.1152/physrev.00032.2006
|
[82]
|
Oyama, K., El-Nachef, D., Zhang, Y., Sdek, P. and MacLellan, W.R. (2014) Epigenetic Regulation of Cardiac Myocyte Differentiation. Frontiers in Genetics, 5, 375.
https://doi.org/10.3389/fgene.2014.00375
|
[83]
|
Zhang, Y., Matsushita, N., Eigler, T. and Marban, E. (2013) Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry. Journal of Regenerative Medicine, 2, 2.
|
[84]
|
Madonna, R., Engel, F.B., Davidson, S.M., Ferdinandy, P., Gorbe, A., Sluijter, J.P. and Van Laake, L.W. (2015) Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-Vivo Stem Cell Rejuvenation. Current Drug Targets, 16, 780-785. https://doi.org/10.2174/1389450116666141205153258
|
[85]
|
Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., O’Hara, S.P., LaRusso, N.F., Miller, J.D., Roos, C.M., Verzosa, G.C., LeBrasseur, N.K., Wren, J.D., Farr, J.N., Khosla, S., Stout, M.B., McGowan, S.J., Fuhrmann-Stroissnigg, H., Gurkar, A.U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y.Y., Barghouthy, A.S., Navarro, D.C., Sano, T., Robbins, P.D., Niedernhofer, L.J. and Kirkland, J.L. (2015) The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell, 14, 644-658.
https://doi.org/10.1111/acel.12344
|
[86]
|
Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y., Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.O., Giles, C.B., Wren, J.D., Niedernhofer, L.J., Robbins, P.D. and Kirkland, J.L. (2016) Identification of a Novel Senolytic Agent, Navitoclax, Targeting the Bcl-2 Family of Anti-Apoptotic Factors. Aging Cell, 15, 428-435. https://doi.org/10.1111/acel.12445
|
[87]
|
Villa, F., Carrizzo, A., Spinelli, C.C., Ferrario, A., Malovini, A., Maciag, A., Damato, A., Auricchio, A., Spinetti, G., Sangalli, E., Dang, Z., Madonna, M., Ambrosio, M., Sitia, L., Bigini, P., Cali, G., Schreiber, S., Perls, T., Fucile, S., Mulas, F., Nebel, A., Bellazzi, R., Madeddu, P., Vecchione, C. and Puca, A.A. (2015) Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis. Circulation Research, 117, 333-345.
https://doi.org/10.1161/CIRCRESAHA.117.305875
|
[88]
|
Villa, F., Malovini, A., Carrizzo, A., Spinelli, C.C., Ferrario, A., Maciag, A., Madonna, M., Bellazzi, R., Milanesi, L., Vecchione, C. and Puca, A.A. (2015) Serum BPIFB4 Levels Classify Health Status in Long-Living Individuals. Immunity & Ageing, 12, 27. https://doi.org/10.1186/s12979-015-0054-8
|
[89]
|
Yousef, H., Conboy, M.J., Morgenthaler, A., Schlesinger, C., Bugaj, L., Paliwal, P., Greer, C., Conboy, I.M. and Schaffer, D. (2015) Systemic Attenuation of the TGF-Beta Pathway by a Single Drug Simultaneously Rejuvenates Hippocampal Neurogenesis and Myogenesis in the Same Old Mammal, Oncotarget, 6, 11959-11978. https://doi.org/10.18632/oncotarget.3851
|
[90]
|
Avolio, E., Gianfranceschi, G., Cesselli, D., Caragnano, A., Athanasakis, E., Katare, R., Meloni, M., Palma, A., Barchiesi, A., Vascotto, C., Toffoletto, B., Mazzega, E., Finato, N., Aresu, G., Livi, U., Emanueli, C., Scoles, G., Beltrami, C.A., Madeddu, P. and Beltrami, A.P. (2014) Ex Vivo Molecular Rejuvenation Improves the Therapeutic Activity of Senescent Human Cardiac Stem Cells in a Mouse Model of Myocardial Infarction. Stem Cells, 32, 2373-2385. https://doi.org/10.1002/stem.1728
|
[91]
|
Avolio, E., Meloni, M., Spencer, H.L., Riu, F., Katare, R., Mangialardi, G., Oikawa, A., Rodriguez-Arabaolaza, I., Dang, Z., Mitchell, K., Reni, C., Alvino, V.V., Rowlinson, J., Livi, U., Cesselli, D., Angelini, G., Emanueli, C., Beltrami, A.P. and Madeddu, P. (2015) Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts through Stimulation of Vascular and Muscular Repair. Circulation Research, 116, e81-e94.
https://doi.org/10.1161/CIRCRESAHA.115.306146
|
[92]
|
Vecellio, M., Spallotta, F., Nanni, S., Colussi, C., Cencioni, C., Derlet, A., Bassetti, B., Tilenni, M., Carena, M.C., Farsetti, A., Sbardella, G., Castellano, S., Mai, A., Martelli, F., Pompilio, G., Capogrossi, M.C., Rossini, A., Dimmeler, S., Zeiher, A. and Gaetano, C. (2014) The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 63, 2132-2147.
https://doi.org/10.2337/db13-0731
|
[93]
|
De Angelis, A., Piegari, E., Cappetta, D., Russo, R., Esposito, G., Ciuffreda, L.P., Ferraiolo, F.A., Frati, C., Fagnoni, F., Berrino, L., Quaini, F., Rossi, F. and Urbanek, K. (2015) SIRT1 Activation Rescues Doxorubicin-Induced Loss of Functional Competence of Human Cardiac Progenitor Cells. International Journal of Cardiology, 189, 30-44. https://doi.org/10.1016/j.ijcard.2015.03.438
|
[94]
|
Mohsin, S., Khan, M., Nguyen, J., Alkatib, M., Siddiqi, S., Hariharan, N., Wallach, K., Monsanto, M., Gude, N., Dembitsky, W. and Sussman, M.A. (2013) Rejuvenation of Human Cardiac Progenitor Cells with Pim-1 Kinase. Circulation Research, 113, 1169-1179. https://doi.org/10.1161/CIRCRESAHA.113.302302
|
[95]
|
Hariharan, N., Quijada, P., Mohsin, S., Joyo, A., Samse, K., Monsanto, M., De La Torre, A., Avitabile, D., Ormachea, L., McGregor, M.J., Tsai, E.J. and Sussman, M.A. (2015) Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging. Journal of the American College of Cardiology, 65, 133-147.
https://doi.org/10.1016/j.jacc.2014.09.086
|
[96]
|
Quijada, P., Hariharan, N., Cubillo, J.D., Bala, K.M., Emathinger, J.M., Wang, B.J., Ormachea, L., Bers, D.M., Sussman, M.A. and Poizat, C. (2015) Nuclear Calcium/Calmodulin-Dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. The Journal of Biological Chemistry, 290, 25411-25426. https://doi.org/10.1074/jbc.M115.657775
|
[97]
|
Limke, T.L. and Rao, M.S. (2002) Neural Stem Cells in Aging and Disease. Journal of Cellular and Molecular Medicine, 6, 475-496.
https://doi.org/10.1111/j.1582-4934.2002.tb00451.x
|
[98]
|
Li, X., Yuan, Z., Wei, X., Li, H., Zhao, G., Miao, J., Wu, D., Liu, B., Cao, S., An, D., Ma, W., Zhang, H., Wang, W., Wang, Q. and Gu, H. (2016) Application Potential of Bone Marrow Mesenchymal Stem Cell (BMSCs) Based Tissue-Engineering for Spinal Cord Defect Repair in Rat Fetuses with Spina Bifida Aperta. Journal of Materials Science: Materials in Medicine, 27, 77.
https://doi.org/10.1007/s10856-016-5684-7
|
[99]
|
Dunnett, S.B. (2010) Chapter 55: Neural Transplantation. Handbook of Clinical Neurology, 95, 885-912. https://doi.org/10.1016/S0072-9752(08)02155-6
|
[100]
|
Schultz, M.B. and Sinclair, D.A. (2016) When Stem Cells Grow Old: Phenotypes and Mechanisms of Stem Cell Aging. Development, 143, 3-14.
https://doi.org/10.1242/dev.130633
|
[101]
|
Yeh, D.C., Chan, T.M., Harn, H.J., Chiou, T.W., Chen, H.S., Lin, Z.S. and Lin, S.Z. (2015) Adipose Tissue-Derived Stem Cells in Neural Regenerative Medicine. Cell Transplant, 24, 487-492. https://doi.org/10.3727/096368915X686940
|
[102]
|
Chan, T.M., Chen, J.Y., Ho, L.I., Lin, H.P., Hsueh, K.W., Liu, D.D., Chen, Y.H., Hsieh, A.C., Tsai, N.M., Hueng, D.Y., Tsai, S.T., Chou, P.W., Lin, S.Z. and Harn, H.J. (2014) ADSC Therapy in Neurodegenerative Disorders. Cell Transplant, 23, 549-557. https://doi.org/10.3727/096368914X678445
|
[103]
|
Cai, W., Zhang, K., Li, P., Zhu, L., Xu, J., Yang, B., Hu, X., Lu, Z. and Chen, J. (2017) Dysfunction of the Neurovascular Unit in Ischemic Stroke and Neurodegenerative Diseases: An Aging Effect. Ageing Research Reviews, 34, 77-87.
https://doi.org/10.1016/j.arr.2016.09.006
|
[104]
|
Farooqui, T. and Farooqui, A.A. (2009) Aging: An Important Factor for the Pathogenesis of Neurodegenerative Diseases. Mechanisms of Ageing and Development, 130, 203-215. https://doi.org/10.1016/j.mad.2008.11.006
|
[105]
|
Mattson, M.P., Pedersen, W.A., Duan, W., Culmsee, C. and Camandola, S. (1999) Cellular and Molecular Mechanisms Underlying Perturbed Energy Metabolism and Neuronal Degeneration in Alzheimer’s and Parkinson’s Diseases. Annals of the New York Academy of Sciences, 893, 154-175.
https://doi.org/10.1111/j.1749-6632.1999.tb07824.x
|
[106]
|
Tang, D.G., Tokumoto, Y.M. and Raff, M.C. (1999) Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells. Evidence for an Intrinsic Maturation Program That Plays out over Months. The Journal of Cell Biology, 148, 971-984.
https://doi.org/10.1083/jcb.148.5.971
|
[107]
|
Ruckh, J.M., Zhao, J.W., Shadrach, J.L., van Wijngaarden, P., Rao, T.N., Wagers, A.J. and Franklin, R.J. (2012) Rejuvenation of Regeneration in the Aging Central Nervous System. Cell Stem Cell, 10, 96-103.
https://doi.org/10.1016/j.stem.2011.11.019
|
[108]
|
Kumar, A., Narayanan, K., Chaudhary, R.K., Mishra, S., Kumar, S., Vinoth, K.J., Padmanabhan, P. and Gulyas, B. (2017) Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Molecular Neurobiology, 54, 7276-7296. https://doi.org/10.1007/s12035-016-0217-4
|
[109]
|
Chen, L., Qiu, R. and Xu, Q. (2014) Mesenchymal Stem Cell Therapy for Neurodegenerative Diseases. Journal of Nanoscience and Nanotechnology, 14, 969-975.
https://doi.org/10.1166/jnn.2014.9126
|
[110]
|
Cova, L., Ratti, A., Volta, M., Fogh, I., Cardin, V., Corbo, M. and Silani, V. (2004) Stem Cell Therapy for Neurodegenerative Diseases: The Issue of Transdifferentiation. Stem Cells and Development, 13, 121-131.
https://doi.org/10.1089/154732804773099326
|
[111]
|
Chen, X., Wang, S. and Cao, W. (2018) Mesenchymal Stem Cell-Mediated Immunomodulation in Cell Therapy of Neurodegenerative Diseases. Cellular Immunology, 326, 8-14. https://doi.org/10.1016/j.cellimm.2017.06.006
|
[112]
|
Marsh, S.E. and Blurton-Jones, M. (2017) Neural Stem Cell Therapy for Neurodegenerative Disorders: The Role of Neurotrophic Support. Neurochemistry International, 106, 94-100. https://doi.org/10.1016/j.neuint.2017.02.006
|
[113]
|
Ottoboni, L., Merlini, A. and Martino, G. (2017) Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System. Frontiers in Cell and Developmental Biology, 5, 52. https://doi.org/10.3389/fcell.2017.00052
|
[114]
|
Filardo, G., Perdisa, F., Roffi, A., Marcacci, M. and Kon, E. (2016) Stem Cells in Articular Cartilage Regeneration. Journal of Orthopaedic Surgery and Research, 11, 42. https://doi.org/10.1186/s13018-016-0378-x
|
[115]
|
Lee, W.Y. and Wang, B. (2017) Cartilage Repair by Mesenchymal Stem Cells: Clinical Trial Update and Perspectives. Journal of Orthopaedic Translation, 9, 76-88.
https://doi.org/10.1016/j.jot.2017.03.005
|
[116]
|
Krajewska-Wlodarczyk, M., Owczarczyk-Saczonek, A., Placek, W., Osowski, A. and Wojtkiewicz, J. (2018) Articular Cartilage Aging-Potential Regenerative Capacities of Cell Manipulation and Stem Cell Therapy. International Journal of Molecular Sciences, 19, pii: E623. https://doi.org/10.3390/ijms19020623
|
[117]
|
Park, C.W., Kim, K.S., Bae, S., Son, H.K., Myung, P.K., Hong, H.J. and Kim, H. (2009) Cytokine Secretion Profiling of Human Mesenchymal Stem Cells by Antibody Array. International Journal of Stem Cells, 2, 59-68.
https://doi.org/10.15283/ijsc.2009.2.1.59
|
[118]
|
Aroen, A. (2011) Stem Cell Therapy for Articular Cartilage Defects. British Medical Bulletin, 99, 227-240. https://doi.org/10.1093/bmb/ldr032
|
[119]
|
Dinulovic, I., Furrer, R. and Handschin, C. (2017) Plasticity of the Muscle Stem Cell Microenvironment. Advances in Experimental Medicine and Biology, 1041, 141-169. https://doi.org/10.1007/978-3-319-69194-7_8
|
[120]
|
Larrick, J.W., Larrick, J.W. and Mendelsohn, A.R. (2016) Reversal of Aged Muscle Stem Cell Dysfunction. Rejuvenation Research.
https://doi.org/10.1089/rej.2016.1875
|
[121]
|
Hwang, A.B. and Brack, A.S. (2018) Muscle Stem Cells and Aging. Current Topics in Developmental Biology, 126, 299-322.
https://doi.org/10.1016/bs.ctdb.2017.08.008
|
[122]
|
Vahidi Ferdousi, L., Rocheteau, P., Chayot, R., Montagne, B., Chaker, Z., Flamant, P., Tajbakhsh, S. and Ricchetti, M. (2014) More Efficient Repair of DNA Double-Strand Breaks in Skeletal Muscle Stem Cells Compared to Their Committed Progeny. Stem Cell Research, 13, 492-507. https://doi.org/10.1016/j.scr.2014.08.005
|
[123]
|
Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C. and Rando, T.A. (2007) Increased Wnt Signaling during Aging Alters Muscle Stem Cell Fate and Increases Fibrosis. Science, 317, 807-810. https://doi.org/10.1126/science.1144090
|
[124]
|
Sousa-Victor, P., Gutarra, S., Garcia-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-Bonilla, V., Jardi, M., Ballestar, E., Gonzalez, S., Serrano, A.L., Perdiguero, E. and Munoz-Canoves, P. (2014) Geriatric Muscle Stem Cells Switch Reversible Quiescence into Senescence. Nature, 506, 316-321.
https://doi.org/10.1038/nature13013
|
[125]
|
Price, F.D., von Maltzahn, J., Bentzinger, C.F., Dumont, N.A., Yin, H., Chang, N.C., Wilson, D.H., Frenette, J. and Rudnicki, M.A. (2014) Inhibition of JAK-STAT Signaling Stimulates Adult Satellite Cell Function. Nature Medicine, 20, 1174-1181.
https://doi.org/10.1038/nm.3655
|
[126]
|
Tierney, M.T. and Sacco, A. (2016) The Role of Muscle Stem Cell-Niche Interactions during Aging. Nature Medicine, 22, 837-838. https://doi.org/10.1038/nm.4159
|
[127]
|
Cosgrove, B.D., Gilbert, P.M., Porpiglia, E., Mourkioti, F., Lee, S.P., Corbel, S.Y., Llewellyn, M.E., Delp, S.L. and Blau, H.M. (2014) Rejuvenation of the Muscle Stem Cell Population Restores Strength to Injured Aged Muscles. Nature Medicine, 20, 255-264. https://doi.org/10.1038/nm.3464
|
[128]
|
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E.R., Lutolf, M.P., Aebersold, R., Schoonjans, K., Menzies, K.J. and Auwerx, J. (2016) NAD(+) Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science, 352, 1436-1443.
https://doi.org/10.1126/science.aaf2693
|
[129]
|
Elabd, C., Cousin, W., Upadhyayula, P., Chen, R.Y., Chooljian, M.S., Li, J., Kung, S., Jiang, K.P. and Conboy, I.M. (2014) Oxytocin Is an Age-Specific Circulating Hormone That Is Necessary for Muscle Maintenance and Regeneration. Nature Communications, 5, 4082. https://doi.org/10.1038/ncomms5082
|
[130]
|
Brack, A.S. and Munoz-Canoves, P. (2016) The Ins and Outs of Muscle Stem Cell Aging. Skeletal Muscle, 6, 1. https://doi.org/10.1186/s13395-016-0072-z
|
[131]
|
Shadrach, J.L. and Wagers, A.J. (2011) Stem Cells for Skeletal Muscle Repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2297-2306.
https://doi.org/10.1098/rstb.2011.0027
|
[132]
|
Wagers, A.J. and Conboy, I.M. (2005) Cellular and Molecular Signatures of Muscle Regeneration: Current Concepts and Controversies in Adult Myogenesis. Cell, 122, 659-667. https://doi.org/10.1016/j.cell.2005.08.021
|
[133]
|
Peault, B., Rudnicki, M., Torrente, Y., Cossu, G., Tremblay, J.P., Partridge, T., Gussoni, E., Kunkel, L.M. and Huard, J. (2007) Stem and Progenitor Cells in Skeletal Muscle Development, Maintenance, and Therapy. Molecular Therapy, 15, 867-877.
https://doi.org/10.1038/mt.sj.6300145
|
[134]
|
Fan, C.M., Li, L., Rozo, M.E. and Lepper, C. (2012) Making Skeletal Muscle from Progenitor and Stem Cells: Development versus Regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 1, 315-327. https://doi.org/10.1002/wdev.30
|