Study of the Bulk Magnetic and Electrical Properties of MgFe2O4 Synthesized by Chemical Method

Abstract

Nanocrystalline Magnesium ferrite has been prepared by chemical co-precipitation technique. Structural characterization has been performed by X-ray diffraction. Formation of ferrites has also been studied by using FTIR. Frequency dependence of real and imaginary part of initial permeability has been presented for the samples sintered at different temperatures. Real part of initial permeability, increases with the increase of grain growth. The loss component repre- sented by imaginary part of initial permeability decreases with frequency up to the measured frequency of this study of 13 MHz. Curie temperatures have been determined from the temperature dependence of permeability. Curie temperatures for the samples of this composition do not vary significantly with the variation of sintering temperatures. B-H loop measurements have been carried out by B-H loop tracer. Transport property measurements haven been carried out by electrometer and impedance analyzer.

Share and Cite:

S. Hoque, M. Hakim, A. Mamun, S. Akhter, M. Hasan, D. Paul and K. Chattopadhayay, "Study of the Bulk Magnetic and Electrical Properties of MgFe2O4 Synthesized by Chemical Method," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1564-1571. doi: 10.4236/msa.2011.211209.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Bahadur, “Current Trends in Applications of Magnetic Ceramic Materials,” Bulletin of Materials Science, Vol. 15, No. 5, 1992, pp. 431-439. doi:10.1007/BF02745292
[2] R. J. Wiley, P. Noirclere and G. Busca, “Preparation and Characterization of Magnesium Chromite and Magne- sium Ferrite Aerogel,” Chemical Engineering Commu- nication, Vol. 123, No. 1, 1993, pp. 1-17. doi:10.1080/00986449308936161
[3] L. G. J. de Haart and G. Blasse, “Photoelectrochemical Properties of Ferrites with the Spinel Structure,” Solid State Ionics, Vol. 16, 1985, pp. 137-139. doi:10.1016/0167-2738(85)90035-9
[4] Y. Huang, Y. Tang, J. Wang and Q. Chen, “Synthesis of MgFe2O4 Nanocrystallites under Mild Conditions,” Ma- terials Chemistry and Physics, Vol. 97, No. 2-3, 2006, pp. 394-397. doi:10.1016/j.matchemphys.2005.08.035
[5] S. K. Pradhan, S. Bid, M. Gateshki and V. Petkov, “Micro-Structure Characterization and Cation Distribu- tion of Nanocrystalline Magnesium Ferrite Prepared by Ball Milling,” Materials Chemistry and Physics, Vol. 93, No. 1, 2006, pp. 224-230. doi:10.1016/j.matchemphys.2005.03.017
[6] S. Verma, P. A. Roy, Y. B. Khollam, H. S. Potdar and S. B. Deshpande, “Synthesis of Nanosized MgFe2O4 Powders by Microwave Hydrothermal Method,” Materials Letters, Vol. 58, No. 6, 2004, pp. 1092-1095. doi:10.1016/j.matlet.2003.08.025
[7] M. Rashad, “Magnetic Properties of Nanocrystalline Magnesium Ferrite by Co-Precipitation Assisted with Ul- trasound Irradiation,” Journal of Materials Science, Vol. 42, No. 13, 2007, pp. 5248-5255. doi:10.1007/s10853-006-0389-9
[8] A. Pradeep and G. Chandrasekaran, “FTIR Study of Ni, Cu and Zn Substituted Nano-Particles of MgFe2O4,” Materials Letters, Vol. 60, No. 3, 2006, pp. 371-374. doi:10.1016/j.matlet.2005.08.053
[9] K. S. Rane, V. M. S. Verenkar and P. Y. Sawant, “Dielec- tric Behaviour of MgFe2O4 Prepared from Chemically Beneficiated Iron Ore Rejects,” Bulletin of Materials Science, Vol. 24, No. 3, 2000, pp. 323-330. doi:10.1007/BF02704930
[10] R. A. Candeia, M. A. F. Souza, M. I. B. Bernardi, S. C. Maestrelli, I. M. G. Santos, A. G. Souza and E. Longo, “MgFe2O4 Pigment Obtained at Low Temperature,” Ma- terials Research Bulletin, Vol. 41, No. 1, 2006, pp. 183- 190. doi:10.1016/j.materresbull.2005.07.019
[11] C. Doroftei, E. Rezlescu, N. Rezlescu and P. D. Popa, “Microstructure and Humidity Sensitive Properties of MgFe2O4 Ferrite with Sn and Mo Substitutions Prepared by Self-combustion Method,” Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 3, 2006, pp. 1012- 1015.
[12] M. Gateshki, V. Petkov, S. K. Pradhan and T. Vogt, “Structure of Nanocrystalline MgFe2O4 from X-ray Dif- Fraction, Rietveld and Atomic Pair Distribution Function Analysis,” Journal of Applied Crystallography, Vol. 38, 2005, pp. 772-779. doi:10.1107/S0021889805024477
[13] P. P. Hankare, V. T. Vader, N. M. Patil, S. D. Jadhav, U. B. Sankpal, M. R. Kadam, B. K. Chougule and N. S. Gajbhiye, “Synthesis, Characterization and Studies on Magnetic and Electrical Properties of Mg Ferrite with Cr Substitution,” Materials Chemistry and Physics, Vol. 113, No. 1, 2009, pp. 233-238. doi:10.1016/j.matchemphys.2008.07.066
[14] A. Sattar, A. H. Wafik and K. M. Kandil, “The Effect of Sintering Temperature on Microhardness and Barkhausen Jumps of Ni and Mg Ferrites,” Journal of Physics D: Applied Physics, Vol. 29, No. 1, 1996, pp. 25-28. doi:10.1088/0022-3727/29/1/005
[15] M. A. Zinovik and E. V. Zinovik, “Ferrites with Rec- tangular and Square Hysteresis Loops,” Powder Metal and Metal Ceramics, Vol. 44, No. 1-2, 2005, pp. 66-74. doi:10.1007/s11106-005-0059-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.