[1]
|
E. P. DeGarmo, J. T. B. R. A. Kohser and B. E. Klamecki, “Materials and Processes in Manufacturing,” 9th Edition, John Wiley & sons, Inc., United States of America, 2003.
|
[2]
|
J. Y. Thompson, S. C. Bayne and H. O. Heymann, “Me- chanical Properties of a New Mica-Based Machinable Glass Ceramic for CAD/CAM Restorations,” The Journal of Prosthetic Dentistry, Vol. 76, No. 3, 1996, pp. 619-623. doi:10.1016/S0022-3913(96)90440-0
|
[3]
|
A. Guedes, et al., “Multilayered Interface in Ti/Macor Machinable Glass-Ceramics Joints,” Materials Science and Engineering A, Vol. 301, 2001, pp. 118-124.
doi:10.1016/S0921-5093(00)01804-9
|
[4]
|
A. F. Grogan and D. F. Smart, “Ceramic Surfaces for Tri- bological Components,” Materials and Design, Vol. 2, 1981, pp. 197-201. doi:10.1016/0261-3069(81)90020-0
|
[5]
|
ASM, “Metals Handbook Machining,” Vol. 16, ASM Int. Pub, 1989.
|
[6]
|
C. T. Lynch, “CRC Handbook of Materials Science,” 2nd Edition, CRC Press, C.T. Lynch, 1975.
|
[7]
|
D. M. Allen, “The Principles and Practice of Photo- chemical Machining and Photoetching,” Adam Hil- ger/IOP, UK, 1986.
|
[8]
|
E. V. Zakka, Constantoudis and E. Gogolides, “Rough- ness Formation during Plasma Etching of Composite Materials: A Kinetic Monte Carlo Approach,” IEEE Transactions of Plasma Science, Vol. 35, No. 5, 2007, pp. 1359-1369. doi:10.1109/TPS.2007.906135
|
[9]
|
F. Gao, et al., “Changing the Size and Shape of Ge Island by Chemical Etching,” Journal of Crystal Growth, Vol. 231, No. 1-2, 2001, pp. 17-21.
doi:10.1016/S0022-0248(01)01357-4
|
[10]
|
U. Gilabert, A. B. Trigubo and N. E. W. D. Reca, “Chemical Etching of CdZnTe (111) Surfaces,” Materials Science and Engineering B, Vol. 27, No. 2-3, 1994, pp. L11-15. doi:10.1016/0921-5107(94)90138-4
|
[11]
|
O. Cakir, H. Temel and M. Kiyak, “Chemical Etching of Cu-ETP Copper,” Journal of Materials Processing Tech- nology, Vol. 162-163, 2005, pp. 275-279.
doi:10.1016/j.jmatprotec.2005.02.035
|
[12]
|
S. W. Youn and C. G. K., “Maskless Pattern Fabrication on Pyrex 7740 Glass Surface by Using Nano-Scratch with HF Wet Etching,” Scripta Materialia, Vol. 52, 2005, pp. 117-122. doi:10.1016/j.scriptamat.2004.09.016
|
[13]
|
Y. Saito, et al., “Mechanism of Etching Rate Change of Aluminosilicate Glass in HF Acid with Micro-Indentation,” Applied Surface Science, Vol. 255, 2008, pp. 2290-2294. doi:10.1016/j.apsusc.2008.07.085
|
[14]
|
Y. Saito, et al., “Fabrication of Micro-Structure on Glass Surface Using Micro-Indentation and Wet etching Process,” Applied Surface Science, Vol. 254, 2008, pp. 7243-7249. doi:10.1016/j.apsusc.2008.05.320
|
[15]
|
T. Nagai,.A. Imanishi and Y. Nakato, “Scratch Induced Nano-Wires Acting as a Macro-Pattern fro Formation of Well-Ordered Step Structures on H-Terminated Si (111) by Chemical Etching,” Applied Surface Science, Vol. 237, No. 1-4, 2004, pp. 533-537.
doi:10.1016/j.apsusc.2004.06.122
|
[16]
|
P. G. Benardos and G.-C. Vosniakos, “Predicting Surface Roughness in Machining: A Review,” International Journal of Machine Tools Manufacture, Vol. 43, 2003, pp. 833-844. doi:10.1016/S0890-6955(03)00059-2
|
[17]
|
N. Prudhomme, et al., “Design of High Frequency GaPO4 BAW Resonators by Chemical Etching,” Sensors and Ac- tuators B, Vol. 131, 2008, pp. 270-278.
doi:10.1016/j.snb.2007.11.020
|
[18]
|
J. Weber, et al., “Hydrogen Penetration into Silicon dur- ing Wet-Chemical Etching,” Microelectronic Engineering, Vol. 66, 2003, pp. 320-326.
doi:10.1016/S0167-9317(02)00926-7
|
[19]
|
C. Lin, et al., “A Fast Phototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 726-732. doi:10.1088/0960-1317/11/6/316
|
[20]
|
D. C. S. Bien, et al., “Chracterization of Masking Materials for Deep Glass Micromachining,” Journal of Microelectromechanical Systems, Vol. 13, 2003, pp. S34-S40.
|
[21]
|
J. Zhang, et al., “Polymerization Optimization of SU-8 Photoresist and its Application in Microfluidic Systems and MEMS,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 20-26.
doi:10.1088/0960-1317/11/1/304
|
[22]
|
T. Corman, P. Enoksson and G. Stemme, “Deep Wet Etching of Borosilicate Glass Using an Anodically Bonded Silicon Substrate as Mask,” Journal of Micromechanics and Microengineering, Vol. 8, 1998.
|
[23]
|
A. Berthold, P. M. Sarro and M. J. Vellekoop, “Two-Step Glass Wet-Etching for Micro-Fluidic Devices,” Proceedings of the SeSens Workshop, Veldhoven, 2000.
|
[24]
|
E. Makino, T. Shibata and Y. Yamada, “Micromachin- ing of Fine Ceramics by Photolithography,” Sensors and Actuators A, Vol. 75, 1999, pp. 278-288.
doi:10.1016/S0924-4247(98)00353-7
|
[25]
|
X. Li, T. Abe and M. Esashi, “Fabrication of High-Density Electrical Feed-Throughs by Deep-Reactive-Ion Etching of Pyrex Glass,” Journal of Microelectromechanical Systems, Vol. 1-6, 2002, pp. 625-630.
|
[26]
|
H. Wensink, et al., “High Resolution Powder Blasting Micromachining,” Proceeding of the 13th Annual Inter- national Conference on Micro Electro Mechanical Sys- tems, Miyazaki, 2000.
|
[27]
|
Y. S. Liao and L. C. Chen, “A Method of Etching and Powder Blasting for Microholes,” Journal of Materials Processing Technology, 2009.
|
[28]
|
S. Schlautmann, et al., “Powder-Blasting Technology as an Alternative Tool for Microfabrication of Capilllary Electrophoresis Chips with Integrated Conductivity Sensors,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 386-389.
doi:10.1088/0960-1317/11/4/318
|
[29]
|
T. Abe, X. Li and M. Esashi, “Endpoint Detectable Plat- ing through Femtosecond Laser Drilled Glass Wafers for Electrical Interconnections,” Sensors and Actuators A, Vol. 108, 2003, pp. 234-238.
doi:10.1016/S0924-4247(03)00262-0
|
[30]
|
C.-W. Chang and C.-P. Kuo, “An Investigation of La- ser-Assisted Machining of Al2O3 Ceramics Planning,” In- ternational Journal of Machine Tools and Manufacture, Vol. 47, 2007, pp. 452-461.
|
[31]
|
C.-H. Tsai and H.-W. Chen, “Laser Milling of Cavity in Ceramic Substrate by Fracture Machining Element Tech- nique,” Journal of Materials Processing Technology, Vol. 136, 2003, pp. 158-165.
doi:10.1016/S0924-0136(03)00133-X
|
[32]
|
L. Chen, E. Siores and W. C. K. Wong, “Keft Characteristics in Abrasive Water Jet Machining of alumina Ceramics,” International Journal of Machine Tools and Manufacture, Vol. 36, 1996, pp. 1201-1206.
doi:10.1016/0890-6955(95)00108-5
|
[33]
|
Z. J. Pei, et al., “Rotary Ultrasonic Machining for Face Milling of Ceramics,” International Journal of Machine Tools Manufacture, Vol. 35, No. 7, 1995, pp. 1033-1046. doi:10.1016/0890-6955(94)00100-X
|
[34]
|
I. P. Tuersley, A. Jawaid and I. R. Pashby, “Review: Various Methods of Machining Advanced Ceramics Materials,” Journal of Materials Processing Technology, Vol. 42, 1994, pp. 377-390.
doi:10.1016/0924-0136(94)90144-9
|
[35]
|
T. Watanabe, “Mass Production of Quartz High-Speed Chemical Etching Applied to AT-Cut Wafers,” IEEE International Frequency Control Symposium and PDA Exhibition, 2001, pp. 368-375.
|
[36]
|
K. R. Williams, K. Gupta and M. Wasilik, “Etch Rates for Micromachining Processing-Part 2,” Journal of Microelectromechanical Systems, Vol. 12, No. 6, 2003, pp. 761-778. doi:10.1109/JMEMS.2003.820936
|
[37]
|
F. Gaiseanu, et al., “Chemical Etching Control during the Self-Limitation Process by Boron Diffusion in Silicon: Analytical Results,” Proceeding of 1997 IEEE Semiconductor Conference, 1997, pp. 247-250.
|
[38]
|
Y. Minhao, M. J. Henderson and A. Gibaud, “On the Etching of Silica and Mesoporous Silica Films Determined by X-ray Reflectivity and Atomic Force Microscopy,” Thin Solid Films, Vol. 514, 2009, pp. 3028-3035. doi:10.1016/j.tsf.2008.12.017
|
[39]
|
M. E. Olsen, et al., “Effect of Varying Etching Times on the Bond Strength of Ceramic Brackets,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 109, No. 4, 1996, pp. 403-409.
doi:10.1016/S0889-5406(96)70122-1
|
[40]
|
D. C. Montgomerty, “Design and Analysis of Experi- ment,” 5th Edition, John Wiley & Sons, Inc., 2001.
|
[41]
|
M. J. Anderson and P. J. Whitcomb, “RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments,” 2nd Edition, Productivity Press, New York, 2005.
|
[42]
|
M. J. Anderson and P. J. Whitcomb, “DOE Simplified: Practical Tools for Effective Experimentation,” 2nd Edition, Productivity Press, New York, 2007.
|
[43]
|
S. Baldassari, et al., “DOE Analyses on Aqueous Suspendsions of TiO2 Nanoparticles,” Journal of European Ceramic Society, Vol. 28, 2008, pp. 2665-2671.
doi:10.1016/j.jeurceramsoc.2008.03.044
|
[44]
|
C. Pierlot, et al., “Design of Experiments in Thermal Spraying: A Review,” Surface and Coatings Technology, Vol. 202, 2008, pp. 4483-4490.
doi:10.1016/j.surfcoat.2008.04.031
|
[45]
|
S. Subramanian, et al., “Modeling and Optimization of the Chemical Etching Process in Niobium Cavities,” International Congress on Advanced Nuclear Power, Hollywood, Florida, 2002.
|
[46]
|
P. H. Chen, et al., “Application of the Taguchi’s Design of Experients to Optimize a Bromine Chemistry-Based Etching Recipe for Deep Silicon Trenches,” Microelectronic Engineering, Vol. 77, 2005, pp. 110-115.
doi:10.1016/j.mee.2004.09.001
|
[47]
|
M. A. Dabnun, M. S. J. Hashmi and M. A. El-Baradie, “Surface Roughness Predictive Model by Design of Ex- periments for Turning Machinable Glass-Ceramic (Macor),” Journal of Materials Processing Technology, Vol. 164-165, 2005, pp. 1289-1293.
doi:10.1016/j.jmatprotec.2005.02.062
|
[48]
|
M. D. Mathew, D. W. Kim and W.-S. Ryu, “A Neural Network Model to Predict Low Cycle Fatigue Life of Nitrogen-Alloyed 316L Stainless Steel,” Materials Science and Engineering A, Vol. 474, 2008, pp. 247-253.
doi:10.1016/j.msea.2007.04.018
|
[49]
|
M. Smith, “Neural Networks for Statistic Modeling,” Van Nostrand Reinhold, New York, 1993.
|
[50]
|
T. W. Liao, “Modelling Process Mean and Variation with MLP Neural Networks,” International Journal of Machine Tools Manufacture, Vol. 36, No. 12, 1996, pp. 1307-1319. doi:10.1016/S0890-6955(96)00054-5
|
[51]
|
K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward Networks Neural Networks,” IEEE Transac- tion on Neutral Network, Vol. 2, 1989, pp. 359-366.
|
[52]
|
K. Funahashi, “On the Approximate Realization of Continuous Mappings by Neural Networks,” Neural networks, Vol. 2, 1989, pp. 183-192.
doi:10.1016/0893-6080(89)90003-8
|
[53]
|
K. Hornik, “Approximation Capabilities of Mulitlayer Feedforward Networks,” Neural networks, Vol. 4, 1991, pp. 251-257. doi:10.1016/0893-6080(91)90009-T
|
[54]
|
M. Aydinalp-Koksal and V. I. Ugursal, “Comparison of Neural Netwok, Conditional Demand Analysis, and Engi- neering Approaches for Modelling End-Use Energy Con- sumption in the Residential Sector,” Applied Energy, Vol. 85, 2008, pp. 271-296.
doi:10.1016/j.apenergy.2006.09.012
|
[55]
|
J. Cai, et al., “Effects on Etching Rates of Copper in Ferric Chloride Solutions,” IEMT/IMC Proceeding, 1998.
|
[56]
|
K. R. Williams and R. S. Muller, “Etch Rates for Micro- machining Processing,” Journal of Microelectromechanical Systems, Vol. 5, No. 4, 1996, pp. 256-269.
doi:10.1109/84.546406
|
[57]
|
N. Prudhomme, et al., “Gallium Orthophoshate Device Manufacturing by Chemical Etching,” Proceeding of 2003 IEEE International Frequency Control Symposium and PDA Exhibition, 2003, pp. 688-693.
|
[58]
|
P. L. Houston, “Chemical Kinetics and Reaction Dynamoics,” 1st Edition, McGraw-Hill, 2001.
|
[59]
|
C. S. Sundararaman, A. Mouton and J. F. Currie, “Che- mical Etching of InP. Indium Phosphide and Related Ma- terials,” 2nd International Conference Proceeding, 1990, pp. 224-227.
|
[60]
|
C. B. Vartuli, et al., “Wet Chemical Etching Survey of III-Nitrides. Solid-State Electronics,” Vol. 41, No. 12, 1997, pp. 1947-1954.
doi:10.1016/S0038-1101(97)00173-1
|
[61]
|
A. F. Tehrani and E. Imanian, “A New Etchant for the Chemical Machining of St304,” Journal of Materials Processing Technology, Vol. 149, 2004, pp. 404-408.
doi:10.1016/j.jmatprotec.2004.02.055
|
[62]
|
Y. Hua, “Studies of a New Chemical Etching Method- 152 Secco Etch in Failure Analysis of Wafer Fabrication,” Proceeding in ICSE, 1998, pp. 20-26.
|
[63]
|
I. Virginia Semiconductor, “Wet-Chemical Etching and Cleaning of Silicon,” Virginia Semicondcutor, Inc: Fred- ericksburg, 2003.
|
[64]
|
S. G. Cook, J. A. Little and J. E. King, “Etching and Microstructure of Engineering Ceramics,” Materials Characterization, Vol. 34, No. 1, 1995, pp. 1-8.
doi:10.1016/1044-5803(94)00044-L
|
[65]
|
H.-J. Choi, et al., “Sliding Wear of Silicon Carbide Modi- fied by Etching with Chlorine at Various Temperatures,” Wear, Vol. 266, 2009, pp. 214-219.
doi:10.1016/j.wear.2008.06.021
|
[66]
|
T. Jardiel, et al., “Domain Structure of Bi4Ti3O12 Ceram- ics Revealed by Chemical Etching,” Journal of European Ceramic Society, Vol. 26, 2006, pp. 2823-2826.
doi:10.1016/j.jeurceramsoc.2005.05.003
|
[67]
|
O. Cakir, “Chemical Etching of Aluminium,” Journal of Materials Processing Technology, Vol. 199, 2008, pp. 337-340. doi:10.1016/j.jmatprotec.2007.08.012
|
[68]
|
G. K. Baranova and L. A. Dorosinskii, “Chemical Polish- ing and Etching of Bi-Sr-Ca-Cu-O High Temperature Su- perconduting System,” Physica C, Vol. 194, 1992, pp. 425-429. doi:10.1016/S0921-4534(05)80024-3
|
[69]
|
Y. Saito, et al., “Micro-Fabrication Techniques Applied to Aluminosilicate Glass Surfaces: Micro-Indentation and Wet Etching Process,” Thin Solid Films, Vol. 517, No. 2, 2009, pp. 2900-2904. doi:10.1016/j.tsf.2008.11.077
|
[70]
|
Y. Saito, et al., “Fabrication of Micro-Structure on Glass Surface Using Micro-Indentation and Wet Etching Process,” Applied Surface Science, Vol. 254, 2008, pp. 7243-7237. doi:10.1016/j.apsusc.2008.05.320
|
[71]
|
O. Cakir, A. Y. T. Ozben, “Chemical Machining,” Ar- chives of Materials Science and Engineering, Vol. 28, No. 8, 2007, pp. 499-502.
|
[72]
|
J. Peng, et al., “Micro-Patterning of 0.70Pb (Mg1/3Nb2/3) O3-0.30PbTiO3 Single Crystals by Ultrasonic Wet Chemical Etching,” Materials letters, Vol. 62, No. 17-18, 2008, pp. 3127-3130. doi:10.1016/j.matlet.2008.02.003
|