[1]
|
Carruthers, B.M., van de Sande, M.I., De Meirleir, K.L., Klimas, N.G., Broderick, G., Mitchell, T., et al. (2011) Myalgic Encephalomyelitis: International Consensus Criteria. Journal of Internal Medicine, 270, 327-338. https://doi.org/10.1111/j.1365-2796.2011.02428.x
|
[2]
|
Nilius, B. and Owsianik, G. (2011) The Transient Receptor Potential Family of Ion Channels. Genome Biology, 12, 218. https://doi.org/10.1186/gb-2011-12-3-218
|
[3]
|
Berridge, M.J. (2012) Calcium Signaling Remodelling and Disease. Biochemical Society Transactions, 40, 297-309. https://doi.org/10.1042/BST20110766
|
[4]
|
Prakriya, M. and Lewis, R.S. (2015) Store-Operated Calcium Channels. Physiological Reviews, 95, 1383-1436. https://doi.org/10.1152/physrev.00020.2014
|
[5]
|
Ambudkar, I.S., de Souza, L.B. and Ong, H.L. (2017) TRPC1, Orai1, and STIM1 in SOCE: Friends in Tight Spaces. Cell Calcium, 63, 33-39. https://doi.org/10.1016/j.ceca.2016.12.009
|
[6]
|
Venkatachalam, K. and Montell, C. (2007) TRP Channels. Annual Review of Biochemistry, 76, 387-417. https://doi.org/10.1146/annurev.biochem.75.103004.142819
|
[7]
|
Takada, Y., Numata, T. and Mori, Y. (2013) Targeting TRPs in Neurodegenerative Disorders. Current Topics in Medicinal Chemistry, 13, 322-334. https://doi.org/10.2174/1568026611313030009
|
[8]
|
Melzer, N., Hicking, G., Göbel, K. and Wiendl, H. (2012) TRPM2 Cation Channels Modulate T Cell Effector Functions and Contribute to Autoimmune CNS Inflammation. PLoS ONE, 7, e47617. https://doi.org/10.1371/journal.pone.0047617
|
[9]
|
Fonfria, E., Murdock, P.R., Cusdin, F.S., Benham, C.D., Kelsell, R.E. and McNulty, S. (2006) Tissue Distribution Pro-Files of the Human TRPM Cation Channel Family. Journal of Receptors and Signal Transduction, 26, 159-178. https://doi.org/10.1080/10799890600637506
|
[10]
|
Papanikolaou, M., Lewis, A. and Butt, A.M. (2017) Store-Operated Calcium Entry Is Essential for Glial Cal-Ciumsignalling in CNS White Matter. Brain Structure & Function, 222, 2993-3005. https://doi.org/10.1007/s00429-017-1380-8
|
[11]
|
Millar, I.D., Bruce, J.I. and Brown, P.D. (2007) Ion Channel Diversity, Channel Expression and Function in the Choroid Plexuses. Cerebrospinal Fluid Research, 4, 8. https://doi.org/10.1186/1743-8454-4-8
|
[12]
|
Oberwinkler, J. and Philipp, S.E. (2007) TRPM3. Transient Recept. Potential TRP Channels. Springer, Berlin, Heidelberg, 253-267. https://doi.org/10.1007/978-3-540-34891-7_15
|
[13]
|
Bading, H. (2013) Nuclear Calcium Signalling in the Regulation of Brain Function. Nature Reviews Neuroscience, 14, 593-608. https://doi.org/10.1038/nrn3531
|
[14]
|
De Bock, M., Wang, N., Decrock, E., Bol, M., Gadicherla, A.K., Culot, M., et al. (2013) Endothelial Calcium Dynamics, Connexin Channels and Blood-Brain Barrier Function. Progress in Neurobiology, 108, 1-20. https://doi.org/10.1016/j.pneurobio.2013.06.001
|
[15]
|
Thiel, G., Müller, I. and Rössler, O.G. (2013) Signal Transduction via TRPM3 Channels in Pancreatic β-Cells. Journal of Molecular Endocrinology, 50, R75-R83. https://doi.org/10.1530/JME-12-0237
|
[16]
|
Wagner, T.F.J., Loch, S., Lambert, S., Straub, I., Mannebach, S., Mathar, I., et al. (2008) Transient Receptor Potential M3 Channels Are Ionotropic Steroid Receptors in Pancreatic β Cells. Nature Cell Biology, 10, 1421-1430. https://doi.org/10.1038/ncb1801
|
[17]
|
Frühwald, J., Londo-o, J.C., Dembla, S., Mannebach, S., Lis, A., Drews, A., et al. (2012) Alternative Splicing of a Protein Domain Indispensable for Function of Transient Receptor Potential Melastatin 3 (TRPM3) Ion Channels. The Journal of Biological Chemistry, 287, 36663-36672. https://doi.org/10.1074/jbc.M112.396663
|
[18]
|
Hermosura, M.C., Cui, A.M., Go, R.C.V., Davenport, B., Shetler, C.M., Heizer, J.W., et al. (2008) Altered Functional Properties of a TRPM2 Variant in Guamanian ALS and PD. Proceedings of the National Academy of Sciences, 105, 18029-18034. https://doi.org/10.1073/pnas.0808218105
|
[19]
|
Hermosura, M.C., Nayakanti, H., Dorovkov, M.V., Calderon, F.R., Ryazanov, A.G., Haymer, D.S., et al. (2005) A TRPM7 Variant Shows Altered Sensitivity to Magnesium That May Contribute to the Pathogenesis of Two Guamanian Neurodegenerative Disorders. Proceedings of the National Academy of Sciences, 102, 11510-11515. https://doi.org/10.1073/pnas.0505149102
|
[20]
|
White, A.T., Light, A.R., Hughen, R.W., Vanhaitsma, T.A. and Light, K.C. (2012) Differences in Metabolite-Detecting, Adrenergic, and Immune Gene Expression after Moderate Exercise in Patients with Chronic Fatigue Syndrome, Patients with Multiple Sclerosis, and Healthy Controls. Psychosomatic Medicine, 74, 46-54. https://doi.org/10.1097/PSY.0b013e31824152ed
|
[21]
|
Light, A.R., White, A.T., Hughen, R.W. and Light, K.C. (2009) Moderate Exercise Increases Expression for Sensory, Adrenergic, and Immune Genes in Chronic Fatigue Syndrome Patients But Not in Normal Subjects. The Journal of Pain, 10, 1099-1112. https://doi.org/10.1016/j.jpain.2009.06.003
|
[22]
|
Marshall-Gradisnik, S., Huth, T., Chacko, A., Johnston, S., Smith, P. and Staines, D. (2016) Natural Killer Cells and Single Nucleotide Polymorphisms of Specific Ion Channels and Receptor Genes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. The Application of Clinical Genetics, 9, 39-47. https://doi.org/10.2147/TACG.S99405
|
[23]
|
Nguyen, T., Johnston, S., Clarke, L., Smith, P., Staines, D. and Marshall-Gradisnik, S. (2017) Impaired Calcium Mobilization in Natural Killer Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients Is Associated with Transient Receptor Potential Melastatin 3 Ion Channels. Clinical & Experimental Immunology, 187, 284-293. https://doi.org/10.1111/cei.12882
|
[24]
|
Nguyen, T., Staines, D., Nilius, B., Smith, P. and Marshall-Gradisnik, S. (2016) Novel Identification and Characterisation of Transient Receptor Potential Melastatin 3 Ion Channels on Natural Killer Cells and B Lymphocytes: Effects on Cell Signalling in Chronic Fatigue Syndrome/Myalgicen-Cephalomyelitis Patients. Biological Research, 49, 27. https://doi.org/10.1186/s40659-016-0087-2
|
[25]
|
Barnden, L.R., Crouch, B., Kwiatek, R., Burnet, R. and Fante, P.D. (2015) Evidence in Chronic Fatigue Syndrome for Severity-Dependent Upregulation of Prefrontal Myelination That Is Independent of Anxiety and Depression. NMR in Biomedicine, 28, 404-413. https://doi.org/10.1002/nbm.3261
|
[26]
|
Barnden, L.R., Kwiatek, R., Crouch, B., Burnet, R. and Del Fante, P. (2016) Autonomic Correlations with MRI Are Abnormal in the Brainstem Vasomotor Centre in Chronic Fatigue Syndrome. NeuroImage: Clinical, 11, 530-537. https://doi.org/10.1016/j.nicl.2016.03.017
|
[27]
|
Shan, Z.Y., Kwiatek, R., Burnet, R., Fante, P.D., Staines, D.R., Marshall-Gradisnik, S.M., et al. (2016) Progressive Brain Changes in Patients with Chronic Fatigue Syndrome: A Longitudinal MRI Study. Journal of Magnetic Resonance Imaging, 44, 1301-1311. https://doi.org/10.1002/jmri.25283
|
[28]
|
Shan, Z.Y., Kwiatek, R., Burnet, R., Fante, P.D., Staines, D.R., Marshall-Gradisnik, S.M., et al. (2017) Medial Prefrontal Cortex Deficits Correlate with Unrefreshing Sleep in Patients with Chronic Fatigue Syndrome. NMR in Biomedicine, 30, e3757. https://doi.org/10.1002/nbm.3757
|
[29]
|
Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K.A., Brammer, M., Zelaya, F., et al. (2006) Probing the Working Memory System in Chronic Fatigue Syndrome: A Functional Magnetic Resonance Imaging Study Using the n-Back Task. Psychosomatic Medicine, 68, 947. https://doi.org/10.1097/01.psy.0000242770.50979.5f
|
[30]
|
Mizuno, K., Tanaka, M., Tanabe, H.C., Joudoi, T., Kawatani, J., Shigihara, Y., et al. (2015) Less Efficient and Costly Processes of Frontal Cortex in Childhood Chronic Fatigue Syndrome. NeuroImage: Clinical, 9, 355-368. https://doi.org/10.1016/j.nicl.2015.09.001
|
[31]
|
Shan, Z.Y., Finegan, K., Bhuta, S., Ireland, T., Staines, D.R., Marshall-Gradisnik, S.M., et al. (2017) De-Creased Connectivity and Increased Blood Oxygenation Level Dependent Complexity in the Default Mode Network in Individuals with Chronic Fatigue Syndrome. Brain Connect, 8, 33-39. https://doi.org/10.1089/brain.2017.0549
|
[32]
|
Otsu, Y., Couchman, K., Lyons, D.G., Collot, M., Agarwal, A., Mallet, J.-M., et al. (2015) Calcium Dynamics in Astrocyte Processes during Neurovascular Coupling. Nature Neuroscience, 18, 210-218. https://doi.org/10.1038/nn.3906
|
[33]
|
Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030
|
[34]
|
Hoffmann, A., Grimm, C., Kraft, R., Goldbaum, O., Wrede, A., Nolte, C., et al. (2010) TRPM3 Is Expressed in Sphingosine-Responsive Myelinating Oligodendrocytes. Journal of Neurochemistry, 114, 654-665. https://doi.org/10.1111/j.1471-4159.2010.06644.x
|
[35]
|
Gees, M., Owsianik, G., Nilius, B. and Voets, T. (2012) TRP Channels. Compr. Physiol., American Cancer Society, 563-608.
|
[36]
|
Zierler, S., Hampe, S. and Nadolni, W. (2017) TRPM Channels as Potential Therapeutic Targets against Pro-Inflammatory Diseases. Cell Calcium, 67, 105-115. https://doi.org/10.1016/j.ceca.2017.05.002
|
[37]
|
Schattling, B., Steinbach, K., Thies, E., Kruse, M., Menigoz, A., Ufer, F., et al. (2012) TRPM4 Cation Channel Mediates Axonal and Neuronal Degeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Nature Medicine, 18, 1805-1811. https://doi.org/10.1038/nm.3015
|
[38]
|
Morelli, M.B., Amantini, C., Liberati, S., Santoni, M. and Nabissi, M. (2013) TRP Channels: New Potential Therapeutic Approaches in CNS Neuropathies. CNS & Neurological Disorders-Drug Targets, 12, 274-293.
|
[39]
|
Moran Magdalene, M. and Arpad, S. (2017) Targeting Nociceptive Transient Receptor Potential Channels to Treat Chronic Pain: Current State of the Field. British Journal of Pharmacology.
|
[40]
|
Dembla, S., Behrendt, M., Mohr, F., Goecke, C., Sondermann, J., Schneider, F.M., et al. (2017) Anti-Nociceptive Action of Peripheral Mu-Opioid Receptors by G-Beta-Gamma Protein-Mediated Inhibition of TRPM3 Channels. ELife, 6, e26280.
|
[41]
|
Quallo, T., Alkhatib, O., Gentry, C., Andersson, D.A. and Bevan, S. (2017) G Protein βγ Subunits Inhibit TRPM3 Ion Channels in Sensory Neurons. ELife, 6, e26138.
|
[42]
|
Badheka, D., Yudin, Y., Borbiro, I., Hartle, C.M., Yazici, A., Mirshahi, T., et al. (2017) Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by G-Protein βγ Subunits. ELife, 6, e26147.
|
[43]
|
Mickle, A.D., Shepherd, A.J. and Mohapatra, D.P. (2016) Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals, 9, 72. https://doi.org/10.3390/ph9040072
|
[44]
|
Echeverry, S., Rodriguez, M.J. and Torres, Y.P. (2016) Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotoxicity Research, 30, 467-478. https://doi.org/10.1007/s12640-016-9632-6
|