[1]
|
Khanna, I.K., Weier, R.M., Yu, Y., Xu, X.D., Koszyk, F.J., Callins, P.W., Kobaldt, C.M,.Veenhuizen, A.W., Perkins, W.E., Casler, J.J., Masferrer, J.L., Zhung, Y.Y., Gregory, S.A., Seibert, K., and Isakson, P.C. (1997) 1,2-Diarylimidazoles as Potent, Cyclooxygenase-2 Selective, and Orally Active Antiinflammatory Agents. Journal of Medicinal Chemistry, 40, 1626-1647. https://doi.org/10.1021/jm9700225
|
[2]
|
Fabiani, M.E. (1999) Angiotensin Receptor Subtypes: Novel Targets for Cardiovascular Therapy. Drug News Perspect, 12, 207-215.
|
[3]
|
Chihiro, M., Nagamoto, H., Takemura, I., Kitano, K., Komatsu, H., Sekiguchi, K., Tabusa, F., Mori, T., Tominnaga, M. and Yabuuchi, Y. (1995) Novel Thiazole Derivatives as Inhibitors of Superoxide Production by Human Neutrophils: Synthesis and Structure-Activity Relationships. Journal of Medicinal Chemistry, 38, 353-358.
https://doi.org/10.1021/jm00002a017
|
[4]
|
Miller, J.S. and Manson, J.L. (2001) Designer Magnets Containing Cyanides and Nitriles. Accounts of Chemical Research, 34, 563-570.
https://www.ncbi.nlm.nih.gov/pubmed/11456474
https://doi.org/10.1021/ar0000354
|
[5]
|
Fatiadi, A.J. (1983) Preparation and Synthetic Applications of Cyano Compounds. In: Patai, S. and Rappaport Z., Eds., Wiley, New York.
https://doi.org/10.1002/9780470771709.ch9
|
[6]
|
Magnus, P., Scott, D.A. and Fielding, M.R. (2001) Direct Conversion of α,β-Unsaturated Nitriles into Cyanohydrins Using Mn(dpm)3 Catalyst, Dioxygen and Phenylsilane. Tetrahedron Letters, 42, 4127-4129.
https://doi.org/10.1016/S0040-4039(01)00693-1
|
[7]
|
Xu, W.B., Xu, Q.H., Zhang, Z.F. and Li, J.Z. (2014) Copper(I)-Oxide-Mediated Cyanation of Arenediazonium Tetrafluoroborates with Trimethylsilyl Cyanide: A Method for Synthesizing Aromatic Nitriles. Asian Journal of Organic Chemistry, 3, 1062-1065. https://doi.org/10.1002/ajoc.201402084
|
[8]
|
Sandmeyer, T. (1884) Ueber die Ersetzung der Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Berichte der Deutschen Chemischen Gesellschaft, 17, 1633-1635. https://doi.org/10.1002/cber.18840170219
|
[9]
|
Kochi, J.K. (1957) The Mechanism of the Sandmeyer and Meerwein Reactions. Journal of the American Chemical Society, 79, 2942-2948.
https://doi.org/10.1021/ja01568a066
|
[10]
|
Lindley, J. (1984) Copper Assisted Nucleophilic Substitution of Aryl Halogen. Tetrahedron, 40, 1433-1456. https://doi.org/10.1016/S0040-4020(01)91791-0
|
[11]
|
Hodgson, H.H. (1947) The Saydimeyer Reaction. Chemical Reviews, 40, 251-277.
https://doi.org/10.1021/cr60126a003
|
[12]
|
Ushkov, A.V. and Grushin, V.V. (2011) Rational Catalysis Design on the Basis of Mechanistic Understanding: Highly Efficient Pd-Catalyzed Cyanation of Aryl Bromides with NaCN in Recyclable Solvents. Journal of the American Chemical Society, 133, 10999-11005. https://doi.org/10.1021/ja2042035
|
[13]
|
Yeung, P.Y, So, C.M., Lau, C.P. and Kwong, F.Y. (2011) A Mild and Efficient Palladium-Catalyzed Cyanation of Aryl Chlorides with K4[Fe(CN)6]. Organic Letters, 13, 648-651. https://doi.org/10.1021/ol1028892
|
[14]
|
Zanon, J., Klapars, A. and Buchwald, S.L. (2003) Copper-Catalyzed Domino Halide Exchange-Cyanation of Aryl Bromides. Journal of the American Chemical Society, 125, 2890-2891. https://doi.org/10.1021/ja0299708
|
[15]
|
Grossman, O. and Gelman, D. (2006) Novel Trans-Spanned Palladium Complexes as Efficient Catalysts in Mild and Amine-Free Cyanation of Aryl Bromides under Air. Organic Letters, 8, 1189-1191. https://doi.org/10.1021/ol0601038
|
[16]
|
Choi, E., Lee, C., Na, Y. and Chang, S. (2002) [RuCl2(p-cymene)]2 on Carbon: An Efficient, Slective, Reusable, and Environmentally Versatile Heterogeneous Catalyst. Organic Letters, 4, 2369-2371. https://doi.org/10.1021/ol0260977
|
[17]
|
Chandrasekhar, S. and Gopalaiah, K. (2003) Beckmann Reaction of Oximes Catalysed by Chloral: Mild and Neutral Procedures. Tetrahedron Letters, 44, 755-756.
https://doi.org/10.1016/S0040-4039(02)02644-8
|
[18]
|
Yamaguchi, K., Fujiwara, H., Ogasawara, Y., Kotani, M. and Mizuno, N.A. (2007) A Tungsten-Tin Mixed Hydroxide as an Efficient Heterogeneous Catalyst for Dehydration of Aldoximes to Nitriles. Angewandte Chemie International Edition, 46, 3922-3925. https://doi.org/10.1002/anie.200605004
|
[19]
|
Ishihara, K., Furuya, Y. and Yamamoto, H. (2002) Rhenium(vii) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie International Edition, 41, 2983-2985.
https://doi.org/10.1002/1521-3773(20020816)41:16<2983::AID-ANIE2983>3.0.CO;2-X
|
[20]
|
Maffioli, S.I., Marzorati, E. and Marazzi, A. (2005) Mild and Reversible Dehydration of Primary Amides with PdCl2 in Aqueous Acetonitrile. Organic Letters, 7, 5237-5239. https://doi.org/10.1021/ol052100l
|
[21]
|
Enthaler, S. (2011) Straightforward Iron-Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 4760-4763.
https://doi.org/10.1002/ejoc.201100754
|
[22]
|
Enthaler, S. and Inoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry—An Asian Journal, 7, 169-175.
https://doi.org/10.1002/asia.201100493
|
[23]
|
Boruah, M. and Konwar, D. (2002) AlCl36H2O/KI/H2O/CH3CN: A New Alternate System for Dehydration of Oximes and Amides in Hydrated Media. The Journal of Organic Chemistry, 67, 7138-7139. https://doi.org/10.1021/jo020005+
|
[24]
|
Yamaguchi, K. and Mizuno, N. (2003) Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42, 1480-1483. https://doi.org/10.1002/anie.200250779
|
[25]
|
Nicolaou, K.C. and Mathison, C.J.N. (2005) Synthesis of Imides, N-Acyl Vinylogous Carbamates and Ureas, and Nitriles by Oxidation of Amides and Amines with Dess-Martin Periodinane. Angewandte Chemie International Edition, 44, 5992-5997.
https://doi.org/10.1002/anie.200501853
|
[26]
|
Chen, F.-E., Kuang, Y.-Y., Dai, H.-F., Lu, L. and Huo, M. (2003) A Selective and Mild Oxidation of Primary Amines to Nitriles with Trichloroisocyanuric Acid. Synthesis, 2629-2631. https://doi.org/10.1055/s-2003-42431
|
[27]
|
Vaghei, R. and Veisi, G.H. (2009) Poly (N,N’-dichloro-N-ethylbenzene-1,3 disulfonamide) and N,N,N’,N’-Tetrachlorobenzene 1,3-disulfonamide as Novel Reagents for the Synthesis of N-Chloroamines, Nitriles and Aldehydes. Synthesis, 945-950. https://doi.org/10.1055/s-0028-1087967
|
[28]
|
Chen, F.E.Y., Li, Y., Xu, M. and Jia, H.Q. (2002) Tetrabutylammonium Peroxydisulfate in Organic Synthesis; XIII.1 A Simple and Highly Efficient One-Pot Synthesis of Nitriles by Nickel-Catalyzed Oxidation of Primary Alcohols with Tetrabutylammonium Peroxydisulfate. Synthesis, 1804-1806.
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2002-33906
|
[29]
|
Brackman, W. and Smith, P.J. (1963) A New Synthesis of Nitriles. Recueil des Travaux Chimiques des PaysBas, 82, 757-762.
https://doi.org/10.1002/recl.19630820803
|
[30]
|
Parameswaran, K.N. and Friedman, O.M. (1965) Synthesis of Nitriles from Aldehydes. Chemistry & Industry, 988-989.
https://www.ncbi.nlm.nih.gov/pubmed/5842016
|
[31]
|
Bose, D.S. and Narsaiah, A.V. (1998) Efficient One Pot Synthesis of Nitriles from Aldehydes in Solid State using Peroxymonosulfate on Alumina. Tetrahedron Letters, 39, 6533-6534. https://doi.org/10.1016/S0040-4039(98)01358-6
|
[32]
|
Erman, M.B., Snow, J.W. and Williams, M.J. (2000) A New Efficient Method for the Conversion of Aldehydes into Nitriles using Ammonia and Hydrogen Peroxide. Tetrahedron Letters, 41, 6749-6752. https://doi.org/10.1016/S0040-4039(00)01168-0
|
[33]
|
Talukdar, S., Hsu, J.-L., Chou, T.-C. and Fang, J.-M. (2001) Direct Transformation of Aldehydes to Nitriles using Iodine in Ammonia Water. Tetrahedron Letters, 42, 1103-1105. https://doi.org/10.1016/S0040-4039(00)02195-X
|
[34]
|
Bandgar, B.P. and Makone, S.S. (2006) Organic Reactions in Water: Transformation of Aldehydes to Nitriles using NBS under Mild Conditions. Synthetic Communications, 36, 1347-1352. https://doi.org/10.1080/00397910500522009
|
[35]
|
Arote, N.D., Bhalerao, D.S. and Akamanchi, K.G. (2007) Direct Oxidative Conversion of Aldehydes to Nitriles using IBX in Aqueous Ammonia. Tetrahedron Letters, 48, 3651-3653. https://doi.org/10.1016/j.tetlet.2007.03.137
|
[36]
|
Telvekar, V.N., Patel, K.N., Kundiakar, H.S. and Chaudhari, H.K. (2008) A Novel System for the Synthesis of Nitriles from Aldehydes using Aqueous Ammonia and Sodium Dichloroiodate. Tetrahedron Letters, 49, 2213-2215.
https://doi.org/10.1016/j.tetlet.2008.02.046
|
[37]
|
Reddy, M.B.M. and Pasha, M.A. (2010) Efficient and High-Yielding Protocol for the Synthesis of Nitriles from Aldehydes. Synthetic Communications, 40, 3384-3389.
https://doi.org/10.1080/00397910903419894
|
[38]
|
Gozum, V.P. and Mebane, R.C. (2013) Solvent-Free and Atom Efficient Conversion of Aldehydes into Nitriles. Green Chemistry Letters and Reviews, 6, 149.
https://doi.org/10.1080/17518253.2012.728633
|
[39]
|
Barahman, M. and Salman, S. (2005) An Efficient and Convenient KF/Al2O3 Mediated Synthesis of Nitriles from Aldehydes. Tetrahedron Letters, 46, 6923-6925.
https://doi.org/10.1016/j.tetlet.2005.08.007
|
[40]
|
Greenberg, A., Breneman, C.M. and Liebman, J.F. (2000) The Amide Linkage: Structural Significance in Chemistry Biochemistry and Material Science. Wiley, New York.
|
[41]
|
Kroschwitz, J.I. (1991) C. E. Mabermann in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 251.
|
[42]
|
Kroschwitz, J.I. (1991) D. Lipp in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 266.
|
[43]
|
Carey, J.S., Laffan, D., Thomson, C. and Williams, M.T. (2006) Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Organic & Biomolecular Chemistry, 4, 2337-2347. https://doi.org/10.1039/b602413k
|
[44]
|
Kroschwitz, J.I. (1991) Mabermann, C. E. in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 251.
|
[45]
|
Kroschwitz, J.I. (1991) R. Opsahl in Encyclopedia of Chemical Technology. Vol. 2, Wiley, New York, 346.
|
[46]
|
Wang, M.-X. (2005) Enantioselective Biotransformations of Nitriles in Organic Synthesis. Topics in Catalysis, 35, 117-135.
https://doi.org/10.1007/s11244-005-3817-1
|
[47]
|
Kumar, D. and Bhalla, T.C. (2005) Microbial Proteases in Peptide Synthesis: Approaches and Applications. Applied Microbiology and Biotechnology, 68, 726-736.
https://doi.org/10.1007/s00253-005-0094-7
|
[48]
|
Gawley, R.E. (1988) The Beckmann Reactions: Rearrangements, Elimination-Additions, Fragmentations, and Rearrangement-Cyclisations. Organic Reactions, 35, 1-247. https://doi.org/10.1002/0471264180.or035.01
|
[49]
|
Izumi, Y., Sato, S. and Urabe, K. (1983) Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime over Boria-Hydroxyapatite Catalyst. Chemistry Letters, 1649-1652. https://doi.org/10.1246/cl.1983.1649
|
[50]
|
Shie, J. and Fang, J (2003) Direct Conversion of Aldehydes to Amides, Tetrazoles, and Triazines in Aqueous Media by One-Pot Tandem Reactions. The Journal of Organic Chemistry, 68, 1158-1160. https://doi.org/10.1021/jo026407z
|
[51]
|
Owston, N.A., Parker, A.J. and Williams, J.M. (2007) Iridium-Catalyzed Conversion of Alcohols into Amides via Oximes. Organic Letters, 9, 73-75.
https://doi.org/10.1021/ol062549u
|
[52]
|
Ghosh, S.C., Ngiam, J.S.Y., Seayad, A.M., Tuan, D.T., Chai, C.L.L. and Chen, A. (2012) Coppee-Catalyzed Oxidative Amidation of Aldehydes with Amine Salt: Synthesis of Primary, Secondary, Tertiary Amides. The Journal of Organic Chemistry, 77, 8007-8015. https://doi.org/10.1021/jo301252c
|
[53]
|
Ramon, R.S., Bosson, J., González, S.D., Marion, N. and Nolan, S.P. (2010) Au/Ag-Cocatalyzed Aldoximes to Amides Rearrangement under Solvent- and Acid-Free Conditions. The Journal of Organic Chemistry, 75, 1197-1202.
https://doi.org/10.1021/jo902461a
|
[54]
|
Ali, M.A. and Punniyamurthy, T. (2010) Palladium-Catalyzed One-Pot Conversion of Aldehydes to Amides. Advanced Synthesis & Catalysis, 352, 288-292.
https://doi.org/10.1002/adsc.200900799
|
[55]
|
Park, S., Choi, Y., Han, H., Yang, S.H. and Chang, S. (2003) Rh-Catalyzed One-Pot and Practical Transformation of Aldoximes to Amides. Chemical Communications, 1936-1937. https://doi.org/10.1039/b305268k
|
[56]
|
Fujiwara, H., Ogasawara, Y., Yamaguchi, K. and Mizuno, N.A. (2007) A One-Pot Synthesis of Primary Amides from Aldoximes or Aldehydes in Water in the Presence of a Supported Rhodium Catalyst. Angewandte Chemie International Edition, 46, 5202-5205. https://doi.org/10.1002/anie.200701273
|
[57]
|
Fujiwara, H., Ogasawara, Y., Kotani, M., Yamaguchi, K. and Mizuno, N. (2008) A Supported Rhodium Hydroxide Catalyst: Preparation, Characterization, and Scope of the Synthesis of Primary Amides from Aldoximes or Aldehydes. Chemistry—An Asian Journal, 3, 1715-1721. https://doi.org/10.1002/asia.200800067
|
[58]
|
Kim, M., Lee, J., Lee, H.-Y. and Chang, S. (2009) Significant Self-Acceleration Effects of Nitrile Additives in the Rhodium-Catalyzed Conversion of Aldoximes to Amides: A New Mechanistic Aspect. Advanced Synthesis & Catalysis, 351, 1807-1812. https://doi.org/10.1002/adsc.200900251
|
[59]
|
Gnanamgari, D. and Crabtree, R.H. (2009) Terpyridine Ruthenium-Catalyzed One-Pot Conversion of Aldehydes into Amides. Organometallics, 28, 922-924.
https://doi.org/10.1021/om8010678
|
[60]
|
Hull, J.F., Hilton, S.T. and Crabtree, R.H. (2010) A Simple Ru Catalyst for the Conversion of Aldehydes or Oximes to Primary Amides. Inorganica Chimica Acta, 363, 1243-1245. https://doi.org/10.1016/j.ica.2009.08.022
|
[61]
|
Chandrasekhar, S. and Gopalaiah, K. (2002) Beckmann Rearrangement of Ketoximes on Solid Metaboric Acid: A Simple and Effective Procedure. Tetrahedron Letters, 43, 2455-2457. https://doi.org/10.1016/S0040-4039(02)00282-4
|
[62]
|
Wang, B., Gu, Y., Luo, C., Yang, T., Yang, L. and Suo, J. (2004) Sulfamic Acid as a Cost-Effective and Recyclable Catalyst for Liquid Beckmann Rearrangement, a Green Process to Produce Amides from Ketoximes without Waste. Tetrahedron Letters, 45, 3369-3372. https://doi.org/10.1016/j.tetlet.2004.03.017
|
[63]
|
De Luca, L., Giacomelli, G. and Porcheddu, A. (2002) Beckmann Rearrangement of Oximes under Very Mild Conditions. The Journal of Organic Chemistry, 67, 6272-6274. https://doi.org/10.1021/jo025960d
|
[64]
|
Antikumar, S. and Chandrasekhar, S. (2000) Improved Procedures for the Beckmann Rearrangement: The Reaction of Ketoxime Carbonates with Boron Trifluoride Etherate. Tetrahedron Letters, 41, 5427-5429.
https://doi.org/10.1016/S0040-4039(00)00875-3
|
[65]
|
Li, D., Shi, F., Guo, S. and Deng, Y. (2005) Highly Efficient Beckmann Rearrangement and Dehydration of Oximes. Tetrahedron Letters, 46, 671-674.
https://doi.org/10.1016/j.tetlet.2004.11.116
|
[66]
|
Sharghi, H. and Sarvari, M.H. (2002) A Direct Synthesis of Nitriles and Amides from Aldehydes using Dry or Wet Alumina in Solvent Free Conditions. Tetrahedron, 58, 10323-10328. https://doi.org/10.1016/S0040-4020(02)01417-5
|
[67]
|
Khalafi-Nezhad, A. and Mohammadi, S. (2014) Chitosan Supported Ionic Liquid: A Recyclable Wet and Dry Catalyst for the Direct Conversion of Aldehydes into Nitriles and Amides under Mild Conditions. RSC Advances, 4, 13782-13787.
http://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra43440k
|
[68]
|
Mulla, S.A.R., Chavan, S.S., Pathan, M.Y., Inamdar, S.M. and Shaikh, T.M.Y. (2015) Ligand-, Base-, Co-Catalyst-Free Copper Fluorapatite (CuFAP) as a Versatile, Ecofriendly, Heterogeneous and Reusable Catalyst for an Efficient Homocoupling of Arylboronic Acid at Ambient Reaction Conditions. RSC Advances, 5, 24675-24680.
http://pubs.rsc.org/en/content/articlelanding/2015/ra/c4ra16760k
|
[69]
|
Mulla, S.A.R., Chavan, S.S., Pathan, M.Y., Inamdar, S.M. and Shaikh, T.M.Y. (2014) An Efficient Synthesis of O-Aryloxime Ethers by Copper Fluorapatite Catalyzed Cross-Coupling of Aryloximes with Arylboronic Acids. Tetrahedron Letters, 55, 5327-5332. https://doi.org/10.1016/j.tetlet.2014.07.056
|
[70]
|
Mulla, S.A.R., Inamdar, S.M., Pathan, M.Y. and Chavan, S.S. (2012) Ligand Free, Highly Efficient Synthesis of Diaryl Ether over Copper Fluorapatite as Heterogeneous Reusable Catalyst. Tetrahedron Letters, 53, 1826-1829.
https://doi.org/10.1016/j.tetlet.2012.01.124
|
[71]
|
Mulla, S.A.R., Inamdar, S.M., Pathan, M.Y. and Chavan, S.S. (2012) Base Promoted Highly Efficient Copper Fluorapatite Catalyzed Coupling of Phenols with Arylboronic Acids under Mild and Ligand-Free Conditions. RSC Advances, 2, 12818-12823. http://pubs.rsc.org/en/content/articlelanding/2012/ra/c2ra21850j
|
[72]
|
Mulla, S.A.R., Pathan, M.Y. and Chavan, S.S. (2013) A Novel and Efficient Synthesis of Azaarene-Substituted 3-Hydroxy-2-Oxindoles via sp3 C-H Functionalization of 2-Methyl Azaarenes and (2-azaaryl)methanes over a Heterogeneous, Reusable Silica-Supported Dodecatungstophosphoric Acid Catalyst. RSC Advances, 3, 20281-20286. http://pubs.rsc.org/en/content/articlelanding/2013/ra/c3ra43515f
|
[73]
|
Mulla, S.A.R., Pathan, M.Y., Chavan, S.S., Gample, S. and Sarkar, P.D. (2014) Highly Efficient One-Pot Multi-Component Synthesis of A-aminophosphonates and Bis-aaminophosphonates Catalyzed by Heterogeneous Reusable Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2) at Ambient Temperature and Their Antitubercular Evaluation against Mycobactrium Tuberculosis. RSC Advances, 4, 7666-7672. http://pubs.rsc.org/en/content/articlehtml/2013/ra/c3ra45853a
|
[74]
|
Choudary, B.M., Sridhar, C., Kantam, M.L., Venkanna, G.T. and Sreedhar, B. (2005) Design and Evolution of Copper Apatite Catalysts for N-Arylation of Heterocycles with Chloro- and Fluoroarenes. Journal of the American Chemical Society, 127, 9948-9949. https://doi.org/10.1021/ja0436594
|
[75]
|
Sharghi, H. and Sarvari, M.H. (2003) Graphite as an Efficient Catalyst for One-Step Conversion of Aldehydes into Nitriles in Dry Media. Synthesis, 2, 243-246.
https://doi.org/10.1055/s-2003-36830
|