Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering
Kyu-Oh Kim, Yaeko Akada, Wei Kai, Byoung-Suhk Kim, Ick-Soo Kim
DOI: 10.4236/jbnb.2011.24044   PDF    HTML     7,917 Downloads   15,088 Views   Citations


In this work, we report the fabrication and cell affinity studies of the poly(vinyl alcohol) (PVA)/hyaluronic acid (HA) cross-linked nanofibers via electrospinning and post cross-linking. FT-IR and TGA analysis demonstrate that HA is not influenced by acid environment such as HCl vapor during cross-linking, and well incorporated into PVA nanofibers. Swelling behavior and cell adhesion of the PVA/HA hydrogel nanofibers are investigated and compared with pure PVA hydrogel nanofibers. It is expected that the nanofibrous PVA/HA hydrogel fibers could be a promising scaffold for cell culture and tissue engineering applications.

Share and Cite:

K. Kim, Y. Akada, W. Kai, B. Kim and I. Kim, "Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 4, 2011, pp. 353-360. doi: 10.4236/jbnb.2011.24044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] (a) M. Sheila, “Progress and Opportunities in Tissue Engineering of Skin’, Nature Insights”, Nature, Vol. 445, 2007, pp. 874-880. (b) B. L. Seal, T. C. Otero and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration”, Mater. Sci. Eng., Vol. 34, No. 4-5, 2001, pp. 147-230.
[2] J. J. Marler, J. Upton, R. Langer and J. P. Vacanti, “Transplantation of cells in matrices for tissue regeneration”, Adv. Drug Delivery Rev., Vol. 33, 1998, pp. 165- 182.
[3] R. E. Horch, M. Debus, G. Wagner and G. B. Stark, “Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis”, Tissue Eng., Vol. 6, 2000, pp. 53-67.
[4] R. M. France, R. D. Short, R. A. Dawson and S. Macneil, “Attachment of human keratinocytes to plasma co-polymers of acrylic acid/octa-1,7-diene and allyl amine/ octa-1,7-diene”, J. Mater. Chem., Vol. 8, 1998, pp. 37-42.
[5] J. F. Kennedy, G. O. Phillips, P.A. Williams and V. Hascall, “In Hyaluronan Eds., Functions of hyaluronan in wound repair”, Woodhead Publishing Ltd.: Cambridge, U.K., 2002, pp. 147-156.
[6] W. Y. J. Chen and G. Abatangelo, “Function of hyaluronan in wound repair”, Wound. Rep. Reg., Vol. 7, 1999, pp. 79-89.
[7] T. Hatakeyama, A. Yamauchi and H. Hatakeyama, “Studies bound water in poly(vinyl alcohol)”, Eur. Polym. J., Vol. 25, 1984, pp. 61-64.
[8] N. A. Peppas and E. W. Merrill, “Poly(vinyl alcohol) hydrogels: reinforcement of radiation-crosslinked networks by crystallization”, J. Polym. Sci., Polym. Chem. Ed., Vol. 14, 1976, pp. 441-457.
[9] M. Liu, R. Cheng and R. Qian, “Investigation of swelling property of poly(vinyl alcohol) hydrogel”, Acta Polym. Sinica, Vol. 2, 1996, pp. 234-239.
[10] C. Tang, C. D. Saquing, J. R. Harding and S. A. Khan, “In situ cross-linking of electrospun poly(vinyl alcohol) Nanofibers”, Macromolecules, Vol. 43, 2010, pp. 630- 637.
[11] J. H. Pang, H. B. Zhang, X. F. Li and Z. H. Jiang, “Novel wholly aromatic sulfonated poly(arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials”, Macromolecules, Vol. 40, 2007, pp. 9435-9442.
[12] P. Alexy, D. Kachova, M. Krsiak, D. Bakos and B. Simkova, “Poly(vinyl alcohol) stabilisation in thermoplastic processing”, Polym. Degrad. Stab., Vol. 78, 2002, pp. 413-21.
[13] H. S. Mansur, C. M Sadahira, A. N. Souza and A. A. P. Mansur, “FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde”, Mater. Sci. Eng. C, Vol. 28, 2008, pp. 539-548.
[14] C. H. Chena, F. Y. Wang, C. F. Mao, W. T. Liao and C. D. Hsieh, “Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films”, Int. J. Bio. Macromol., Vol. 43, 2008, pp. 37-42.
[15] (a) J. C. Park, T. Ito, K. O. Kim, B. S. Kim, M. S. Khil and I. S. Kim, “Electrospun poly(vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability”, Polym. J., Vol. 42, 2010, pp. 273-276. (b) O. Ohsawa, K. H. Lee, B. S. Kim, S. Lee, I. S. Kim, Polymer, Vol. 51, 2010, pp. 2007-2012.
[16] C. K. Kim, B. S. Kim, F. A. Sheikh, U. S. Lee, M. S. Khil and H. Y. Kim, “Amphiphilic Poly(vinyl alcohol) Hybrids and Electrospun Nanofibers Incorporating Polyhedral Oligosilsesquioxane”, Macromolecules, Vol. 40, 2007, pp. 4823-4828.
[17] H. R. Kim, T. Ito, B. S. Kim, Y. Watanabe and I. S. Kim, “Mechanical Properties, Morphologies, and Microstructures of Novel Electrospun Metallized Nanofibers”, Adv. Eng. Mater., Vol. 13, 2011, pp. 376-382.
[18] (a) K. O. Kim, Y. A Seo, B. S. Kim, K. J. Yoon, M. S. Khil, H. Y. Kim and I. S. Kim, “Transition behaviors and hybrid nanofibers of poly(vinyl alcohol) and polyethylene glycol-POSS telechelic blends”, Colloid Polym Sci, Vol. 289, 2011, pp. 863-870. (b) K. O. Kim, B. S. Kim and I. S. Kim, “Self-Assembled Core-Shell Poly(ethylene glycol)-POSS Nanocarriers for Drug Delivery”, Journal of Biomaterials Nanobiotechnology, in press.
[19] Y. Osada and J. P. Gong, “Stimuli-responsive polymer gels and their application to chemomechanical systems”, Prog. Polym. Sci., Vol. 18, 1993, pp. 187-226.
[20] B. S. Kim, J. P. Gong and Y. Osada, ”Surfactant binding by polyelectrolyte gels and its application to electro- driven chemomechanics”, Polym. Int., Vol. 48, 1999, pp. 619-698.
[21] X. Huang and C. S. brazel, “Analysis of burst release of proxyphylline from poly (vinyl alcohol) hydrogels”, Chem. eng. Comm., Vol. 190, 2003, pp. 519-532.
[22] (a) P. J. Flory and J. J. Rehner, “Statistical mechanics of cross-linked polymer networks”, J. Chem. Phys., Vol. 11, 1943, pp. 512-520. (b) P. J. Flory and J. J. Rehner, “Statistical mechanics of cross- linked polymer networks II. Swelling”, J. Chem. Phys., Vol. 11, 1943, pp. 521-526.
[23] P. Martens, J. Blundo, A. Nilasaroya, R. A. Odell, J. C. White and L. A. P. Warren, “Effect of Poly(vinyl alcohol) Macromer Chemistry and Chain Interactions on Hydrogel Mechanical Properties”, Chem. Mater., Vol. 19, No. 10, 2007, pp. 2641-2648.
[24] J. F. Kennedy, G. O. Phillips, P. A. Williams and V. Has- call, “In Hyaluronan Eds., Functions of hyaluronan in wound repair”, Woodhead Publishing Ltd.: Cambridge, U.K., 2002, pp. 341-348.
[25] J. Lesley, N. M. English, I. Gal, K. Mikecz, A. J. Day and R. Hyman, “Hyaluronan binding properties of a CD44 chimera containing the link module of TSG-6”, J. Biol. Chem., Vol. 277, 2002, pp. 26600-26608.
[26] J. Lesley, I. Gal, D. J. Mahoney, M. R. Cordell, M. S. Rugg, R. Hyman, A. J. Day and K. Mikecz, “TSG-6 modulates the interaction between hyaluronan and cell surface CD44”, J. Biol. Chem., Vol. 279, 2004, pp. 25745-25754.
[27] K. Wei, Y. Li, K. O. Kim, B. S. Kim, K. Abe, G. Q. Chen and I. S. Kim, “Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effect in osteoblastic behavior”, J. Biomed. Mat. Res.: Part A, Vol. 97A, No. 3, 2011, pp. 272-280.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.