[1]
|
Aserse, A.A., et al. (2012) Phylogeny and Genetic Diversity of Native Rhizobia Nodulating Common Bean (Phaseolus vulgaris L.) in Ethiopia. Systematic and Applied Microbiology, 35, 120-131. http://dx.doi.org/10.1016/j.syapm.2011.11.005
|
[2]
|
Faghire, M., et al. (2012) Identification at the Species and Symbiovar Levels of Strains Nodulating Phaseolus vulgaris in Saline Soils of the Marrakech Region (Morocco) and Analysis of the otsA Gene Putatively Involved in Osmotolerance. Systematic and Applied Microbiology, 35, 156-164. http://dx.doi.org/10.1016/j.syapm.2012.02.003
|
[3]
|
Van Berkum, P., Beyene, D. and Eardly, B.D. (1996) Phylogenetic Relationships among Rhizobium Species Nodulating the Common Bean (Phaseolus vulgaris L.). International Journal of Systematic Bacteriology, 46, 240-244.
http://dx.doi.org/10.1099/00207713-46-1-240
|
[4]
|
Cao, Y., et al. (2014) Diversity and Distribution of Rhizobia Nodulated with Phaseolus vulgaris in Two Ecoregions of China. Soil Biology and Biochemistry, 78, 128-137.
http://dx.doi.org/10.1016/j.soilbio.2014.07.026
|
[5]
|
Giller, K. (1990) Assessment and Improvement of Nitrogen Fixation in Tropical Phaseolus vulgaris L. Soil Use and Management, 6, 82-84.
http://dx.doi.org/10.1111/j.1475-2743.1990.tb00809.x
|
[6]
|
Mnasri, B., et al. (2014) Rhizobium azibense sp. nov., a Nitrogen Fixing Bacterium Isolated from Root-Nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology, 64, 1501-1506. http://dx.doi.org/10.1099/ijs.0.058651-0
|
[7]
|
Hillocks, R., et al. (2006) Phaseolus Bean Improvement in Tanzania, 1959-2005. Euphytica, 150, 215-231. http://dx.doi.org/10.1007/s10681-006-9112-9
|
[8]
|
Kisetu, E., Silayo, S.A. and Tsere, G.S. (2013) Use of Predictive Screening Parameters in Selected Common Bean Genotypes to Assess Their Salt Tolerance Ability Using NaCl Concentration. Advanced Journal of Agricultural Research, 1, 51-60.
|
[9]
|
Ndakidemi, P., et al. (2006) Yield and Economic Benefits of Common Bean (Phaseolus vulgaris) and Soybean (Glycine Max) Inoculation in Northern Tanzania. Australian Journal of Experimental Agriculture, 46, 571-577. http://dx.doi.org/10.1071/EA03157
|
[10]
|
Amijee, F. and Giller, K.E. (1998) Environmental Constraints to Nodulation and Nitrogen Fixation of Phaseolus vulgaris L. in Tanzania. I. A Survey of Soil Fertility, Root Nodulation and Multi-Locational respoNses to Rhizobium Inoculation. African Crop Science Journal, 6, 159-169. http://dx.doi.org/10.4314/acsj.v6i2.27812
|
[11]
|
Ribeiro, R.A., et al. (2013) Novel Rhizobium Lineages Isolated from Root Nodules of the Common Bean (Phaseolus vulgaris L.) in Andean and Mesoamerican Areas. Research in Microbiology, 164, 740-748. http://dx.doi.org/10.1016/j.resmic.2013.05.002
|
[12]
|
Giller, K., et al. (1998) Environmental Constraints to Nodulation and Nitrogen Fixation of Phaseolus vulgaris L in Tanzania II Response to N and P Fertilizers and Inoculation with Rhizobium. African Crop Science Journal, 6, 171-178.
http://dx.doi.org/10.4314/acsj.v6i2.27813
|
[13]
|
Mwandemele, O.D. and Nchimbi, S.F. (1990) Country reports-Tanzania. In: Smithson, J.B., Ed., Proceedings of Workshop on Bean Varietal Improvement in Africa, Maseru, 163-178.
|
[14]
|
Okalebo, J., et al. (2007) Available Technologies to Replenish Soil Fertility in East Africa. In: Bationo, A., Waswa, B., Kihara, J. and Kimetu, J., Eds., Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities, Springer, Netherlands, 45-62. http://dx.doi.org/10.1007/978-1-4020-5760-1_3
|
[15]
|
Pereira, R.M., et al. (2006) Molecular Characterization of Bacterial Populations of Different Soils. Brazilian Journal of Microbiology, 37, 439-447.
http://dx.doi.org/10.1590/S1517-83822006000400007
|
[16]
|
Graham, P. (1981) Some Problems of Nodulation and Symbiotic Nitrogen Fixation in Phaseolus vulgaris L.: A Review. Field Crops Research, 4, 93-112.
http://dx.doi.org/10.1016/0378-4290(81)90060-5
|
[17]
|
Schroder, J.J. (2014) The Position of Mineral Nitrogen Fertilizer in Efficient Use of Nitrogen and Land: A Review. Natural Resources, 5, 936-948.
http://dx.doi.org/10.4236/nr.2014.515080
|
[18]
|
Niazi, T. (2004) Rural Poverty and the Green Revolution: The Lessons from Pakistan. The Journal of Peasant Studies, 31, 242-260. http://dx.doi.org/10.1080/0306615042000224294
|
[19]
|
Sanfo, S. and Gérard, F. (2012) Public Policies for Rural Poverty Alleviation: The Case of Agricultural Households in the Plateau Central Area of Burkina Faso. Agricultural Systems, 110, 1-9. http://dx.doi.org/10.1016/j.agsy.2012.02.006
|
[20]
|
Davidson, E.A. (2009) The Contribution of Manure and Fertilizer Nitrogen to Atmospheric Nitrous Oxide Since 1860. Nature Geoscience, 2, 659-662.
http://dx.doi.org/10.1038/ngeo608
|
[21]
|
Suprapta, D.N. (2012) Potential of Microbial Antagonists as Biocontrol Agents against Plant Fungal Pathogens. Journal of International Society for Southeast Asian Agricultural Sciences, 18, 1-8.
|
[22]
|
Giller, K.E. (2001) Nitrogen Fixation in Tropical Cropping Systems. CABI.
http://dx.doi.org/10.1079/9780851994178.0000
|
[23]
|
Lindstrom, K. and Mousavi, S.A. (2010) Rhizobium and Other N-Fixing Symbioses. eLS.
|
[24]
|
Tairo, E.V. and Ndakidemi, P.A. (2013) Bradyrhizobium japonicum Inoculation and Phosphorus Supplementation on Growth and Chlorophyll Accumulation in Soybean (Glycine max L.). American Journal of Plant Sciences, 4, 2281-2289.
http://dx.doi.org/10.4236/ajps.2013.412282
|
[25]
|
Nyoki, D. and Ndakidemi, P.A. (2014) Effects of Bradyrhizobium japonicum Inoculation and Supplementation with Phosphorus on Macronutrients Uptake in Cowpea (Vigna unguiculata (L.) Walp). American Journal of Plant Sciences, 5, 442-451.
http://dx.doi.org/10.4236/ajps.2014.54058
|
[26]
|
Loganathan, M., Garg, R., Saha, S., Bag, T.K. anf Rai, A.B. (2010) Selection of Antagonistic Rhizobacteria against Soil Borne Pathogens. Journal of Mycopathological Research, 48, 227-232.
|
[27]
|
Gaurav, S., Chatterjee, S. and Chandra, M. (2009) Efficient Nitrogen Fixing Rhizobial Isolate Infecting Vigna radiata L. Asian Journal of Agricultural Sciences, 1, 62-65.
|
[28]
|
Ghimire, A. (2002) A Review on Organic Farming for Sustainable Agriculture. Department of Agriculture Extension and Rural Sociology, Institute of Agriculture and Animal Science Rampur, Chitwan, 6.
|
[29]
|
Haru, A. and Ethiopia, W. (2012) Influences of Inoculation Methods and Phosphorus Levels on Nitrogen Fixation Attributes and Yield of Soybean (Glycine max L.) at Haru, Western Ethiopia. American Journal of Plant Nutrition and Fertilization Technology, 2, 45-55.
http://dx.doi.org/10.3923/ajpnft.2012.45.55
|
[30]
|
Jonah, N., Chemining’wa, G.N., Muthomi, J.W. and Shibairo, S.I. (2012) Effect of Rhizobium Inoculation and Nitrogen Fertilizer Application on Growth, Nodulation and Yield of Two Garden Pea Genotypes. Journal of Animal & Plant Sciences, 15, 2147-2156.
|
[31]
|
Meade, J., Higgins, P. and O’Gara, F. (1985) Studies on the Inoculation and Competitiveness of a Rhizobium leguminosarum Strain in Soils Containing Indigenous Rhizobia. Applied and Environmental Microbiology, 49, 899-903.
|
[32]
|
Mfilinge, A., Mtei, K. and Ndakidemi, P.A. (2015) Economic Benefit of Rhizobial Inoculation and Fertilisation with Phosphorus and Potassium on Selected Bush Bean Varieties [Phaseolus vulgaris L.] in Northern Tanzania. African Journal of Applied Agricultural Sciences and Technologies, 2, 57-71.
|
[33]
|
Nyoki, D. and Patrick, A.N. (2013) Economic Benefits of Bradyrhizobium japonicum Inoculation and Phosphorus Supplementation in Cowpea (Vigna unguiculata (L) Walp) Grown in Northern Tanzania. American Journal of Research Communication, 1, 173-189.
|
[34]
|
Tairo, E.V. and Ndakidemi, P.A. (2013) Yields and Economic Benefits of Soybean (Glycine max L.) as Affected by Bradyrhizobium japonicum Inoculation and Phosphorus Supplementation. American Journal of Research Communication, 1, 159-172.
|
[35]
|
Bhattacharyya, P. and Jha, D. (2012) Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. http://dx.doi.org/10.1007/s11274-011-0979-9
|
[36]
|
Kala, T.C., Christi, R.M. and Bai, N.R. (2011) Effect of Rhizobium Inoculation on the Growth and Yield of Horsegram (Dolichos biflorus Linn). Plant Archives, 11, 97-99.
|
[37]
|
Pawar, V.A., et al. (2014) Effect of Rhizobium on Seed Germination and Growth of Plants. Journal of Academia and Industrial Research (JAIR), 3, 84.
|
[38]
|
Bull, C., Shetty, K. and Subbarao, K. (2002) Interactions between Myxobacteria, Plant Pathogenic Fungi, and Biocontrol Agents. Plant Disease, 86, 889-896.
http://dx.doi.org/10.1094/PDIS.2002.86.8.889
|
[39]
|
Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 124, 803-814.
http://dx.doi.org/10.1016/j.cell.2006.02.008
|
[40]
|
Deshwal, V.K. and Chaubey, A. (2014) Isolation and Characterization of Rhizobium leguminosarum from Root Nodule of Pisum sativum L. Journal of Academia and Industrial Research (JAIR), 2, 464.
|
[41]
|
Lindstrom, K., Murwira, M., Willems, A. and Altier, N. (2010) The Biodiversity of Beneficial Microbe-Host Mutualism: The Case of Rhizobia. Research in Microbiology, 161, 453-463. http://dx.doi.org/10.1016/j.resmic.2010.05.005
|
[42]
|
Bala, A., Karanja, N., Murwira, M., Lwimbi, L., Abaidoo, R. and Giller, K. (2011) Production and Use of Rhizobial Inoculants in Africa. N2Africa.
|
[43]
|
Thies, J.E., Singleton, P.W. and Bohlool, B.B. (1991) Influence of the Size of Indigenous Rhizobial Populations on Establishment and Symbiotic Performance of Introduced Rhizobia on Field-Grown Legumes. Applied and Environmental Microbiology, 57, 19-28.
|
[44]
|
Singleton, P. and Tavares, J. (1986) Inoculation Response of Legumes in Relation to the Number and Effectiveness of Indigenous Rhizobium Populations. Applied and Environmental Microbiology, 51, 1013-1018.
|
[45]
|
Thies, J.E., Singleton, P.W. and Bohlool, B.B. (1991) Modeling Symbiotic Performance of Introduced Rhizobia in the Field by Use of Indices of Indigenous Population Size and Nitrogen Status of the Soil. Applied and Environmental Microbiology, 57, 29-37.
|
[46]
|
Subramanian, S.B., Yan, S., Tyagi, R., Surampalli, R. and Zhang, T. (2009) Biofertilizers/ Bioinoculants. In: Tyagi, R.D., Surampalli, R.Y., Yan, S., Zhang, T.C., Kao, C.M. and Lohani, B.N., Eds., Sustainable Sludge Management: Production of Value Added Products, American Society of Civil Engineers (ASCE), 203-230.
http://dx.doi.org/10.1061/9780784410516.ch09
|
[47]
|
Denison, R.F. and Kiers, E.T. (2004) Why Are Most Rhizobia Beneficial to Their Plant Hosts, Rather than Parasitic? Microbes and Infection, 6, 1235-1239.
http://dx.doi.org/10.1016/j.micinf.2004.08.005
|
[48]
|
Denison, R.F. and Kiers, E.T. (2004) Lifestyle Alternatives for Rhizobia: Mutualism, Parasitism, and Forgoing Symbiosis. FEMS Microbiology Letters, 237, 187-193.
http://dx.doi.org/10.1111/j.1574-6968.2004.tb09695.x
|
[49]
|
West, S.A., Kiers, E.T., Simms, E.L. and Denison, R.F. (2002) Sanctions and Mutualism Stability: Why Do Rhizobia Fix Nitrogen? Proceedings of the Royal Society of London B: Biological Sciences, 269, 685-694. http://dx.doi.org/10.1098/rspb.2001.1878
|
[50]
|
Somasegaran, P. and Hoben, H.J. (2012) Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. Springer Science & Business Media, Berlin.
|
[51]
|
Bala, A., Abaidoo, R. and Woomer, P. (2010) Rhizobia Strain Isolation and Characterisation Protocol. www.N2Africa.org
|
[52]
|
Schrire, B., Lewis, G. and Lavin, M. (2005) Biogeography of the Leguminosae. In: Lewis, G.P., Schrire, B.D., MacKinder, B. and Lock, M., Eds., Legumes of the World, Kew Publishing, 21-54.
|
[53]
|
Ndakidemi, P.A. and Dakora, F.D. (2003) Legume Seed Flavonoids and Nitrogenous Metabolites as Signals and Protectants in Early Seedling Development. Functional Plant Biology, 30, 729-745. http://dx.doi.org/10.1071/FP03042
|
[54]
|
Loganathan, M., Garg, R., Venkataravanappa, V., Saha, S. and Rai, A.B. (2014) Plant Growth Promoting Rhizobacteria (PGPR) Induces Resistance against Fusarium wilt and Improves Lycopene Content and Texture in Tomato. African Journal of Microbiology Research, 8, 1105-1111. http://dx.doi.org/10.5897/AJMR2013.5653
|
[55]
|
Zaidi, A., Khan, M., Ahemad, M. and Oves, M. (2009) Plant Growth Promotion by Phosphate Solubilizing Bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263-284.
http://dx.doi.org/10.1556/AMicr.56.2009.3.6
|
[56]
|
Dall’Agnol, R.F., et al. (2014) Rhizobium paranaense sp. nov., an Effective N2-Fixing Symbiont of Common Bean (Phaseolus vulgaris L.) with Broad Geographical Distribution in Brazil. International Journal of Systematic and Evolutionary Microbiology, 64, 3222-3229.
http://dx.doi.org/10.1099/ijs.0.064543-0
|
[57]
|
Matiru, V.N. and Dakora, F.D. (2004) Potential Use of Rhizobial Bacteria as Promoters of Plant Growth for Increased Yield in Landraces of African Cereal Crops. African Journal of Biotechnology, 3, 1-7. http://dx.doi.org/10.5897/AJB2004.000-2002
|
[58]
|
Sorokin, I.D., et al. (2008) Bacillus alkalidiazotrophicus sp. nov., a Diazotrophic, Low Salt-Tolerant Alkaliphile Isolated from Mongolian Soda Soil. International Journal of Systematic and Evolutionary Microbiology, 58, 2459-2464.
http://dx.doi.org/10.1099/ijs.0.65655-0
|
[59]
|
Botha, W.J., Jaftha, J.B., Bloem, J.F., Habig, J.H. and Law, I.J. (2004) Effect of Soil Bradyrhizobia on the Success of Soybean Inoculant Strain CB 1809. Microbiological Research, 159, 219-231. http://dx.doi.org/10.1016/j.micres.2004.04.004
|
[60]
|
Doignon-Bourcier, F., Willems, A., Coopman, R., Laguerre, G., Gillis, M. and de Lajudie, P. (2000) Genotypic Characterization of Bradyrhizobium Strains Nodulating Small Senegalese Legumes by 16S-23S rRNA Intergenic Gene Spacers and Amplified Fragment Length Polymorphism Fingerprint Analyses. Applied and Environmental Microbiology, 66, 3987-3997. http://dx.doi.org/10.1128/AEM.66.9.3987-3997.2000
|
[61]
|
Lupwayi, N.Z., Claytona, G.W., O’Donovanb, J.T. and Grantc, C.A. (2011) Soil Microbial Response to Nitrogen Rate and Placement and Barley Seeding Rate under No Till. Agronomy Journal, 103, 1064-1071. http://dx.doi.org/10.2134/agronj2010.0334
|
[62]
|
Hassen, A.I., Bopape, F.L. and Trytsman, M. (2014) Nodulation Study and Characterization of Rhizobial Microsymbionts of Forage and Pasture Legumes in South Africa. World, 2, 93-100.
|
[63]
|
Van Loon, L. (2007) Plant Responses to Plant Growth-Promoting Rhizobacteria. European Journal of Plant Pathology, 119, 243-254. http://dx.doi.org/10.1007/s10658-007-9165-1
|
[64]
|
Lugtenberg, B. and Kamilova, F. (2009) Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556.
http://dx.doi.org/10.1146/annurev.micro.62.081307.162918
|
[65]
|
Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasama, V. and Samiyappan, R. (2001) Induction of Systemic Resistance by Plant Growth Promoting Rhizobacteria in Crop Plants against Pests and Diseases. Crop Protection, 20, 1-11.
http://dx.doi.org/10.1016/S0261-2194(00)00056-9
|
[66]
|
Ehteshamul-Haque, S. and Ghaffar, A. (1993) Use of Rhizobia in the Control of Root Rot Diseases of Sunflower, Okra, Soybean and Mungbean. Journal of Phytopathology, 138, 157-163. http://dx.doi.org/10.1111/j.1439-0434.1993.tb01372.x
|
[67]
|
Son, H.-J., Park, G.-T., Cha, M.-S. and Heo, M.-S. (2006) Solubilization of Insoluble Inorganic Phosphates by a Novel Salt-and pH-Tolerant Pantoea agglomerans R-42 Isolated from Soybean Rhizosphere. Bioresource Technology, 97, 204-210.
http://dx.doi.org/10.1016/j.biortech.2005.02.021
|
[68]
|
Rodríguez, H. and Fraga, R. (1999) Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnology Advances, 17, 319-339.
http://dx.doi.org/10.1016/S0734-9750(99)00014-2
|
[69]
|
Chen, Y., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.-A. and Young, C.C. (2006) Phosphate Solubilizing Bacteria from Subtropical Soil and Their Tricalcium Phosphate Solubilizing Abilities. Applied Soil Ecology, 34, 33-41. http://dx.doi.org/10.1016/j.apsoil.2005.12.002
|
[70]
|
Goldstein, A.H. (1994) Involvement of the Quinoprotein Glucose Dehydrogenase in the Solubilization of Exogenous Phosphates by Gram-Negative Bacteria. In: Torriani-Gorini, A., Yagil, E. and Silver, S., Eds., Phosphate in Microorganisms: Cellular and Molecular Biology, ASM Press, Washington DC, 197-203.
|
[71]
|
Richardson, A.E., Barea, J.-M., McNeill, A.M. and Prigent-Combaret, C. (2009) Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant and Soil, 321, 305-339. http://dx.doi.org/10.1007/s11104-009-9895-2
|
[72]
|
Halder, A., Mishra, A.K., Bhattacharyya, P. and Chakrabartty, P.K. (1990) Solubilization of Rock Phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology, 36, 81-92.
|
[73]
|
Halder, A. and Chakrabartty, P. (1993) Solubilization of Inorganic Phosphate by Rhizobium. Folia Microbiologica, 38, 325-330. http://dx.doi.org/10.1007/BF02898602
|
[74]
|
Compant, S., Duffy, B., Nowak, J., Clément, C. and Barka, E.A. (2005) Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 71, 4951-4959.
http://dx.doi.org/10.1128/AEM.71.9.4951-4959.2005
|
[75]
|
Loganathan, M., Rai, A.B., Singh, A. and Saha, S. (2014) Plant Growth Promoting Rhizobacteria in Vegetable Disease Management. In: Kharwar, R.N., Upadhyay, R.S., Dubey, N.K. and Raghuwanshi, R., Eds., Microbial Diversity and Biotechnology in Food Security, Springer, Berlin, 373-382.
|
[76]
|
Berraho, E., Lesueur, D., Diem, H.G. and Sasson, A. (1997) Iron Requirement and Siderophore Production in Rhizobium ciceri during Growth on an Iron-Deficient Medium. World Journal of Microbiology and Biotechnology, 13, 501-510.
http://dx.doi.org/10.1023/A:1018553022960
|
[77]
|
Nakamura, H., Nakamura, K. and Yodoi, J. (1997) Redox Regulation of Cellular Activation. Annual Review of Immunology, 15, 351-369.
http://dx.doi.org/10.1146/annurev.immunol.15.1.351
|
[78]
|
von Wirén, N., Khodr, H. and Hider, R.C. (2000) Hydroxylated Phytosiderophore Species Possess an Enhanced Chelate Stability and Affinity for Iron(III). Plant Physiology, 124, 1149-1158. http://dx.doi.org/10.1104/pp.124.3.1149
|
[79]
|
Sayyed, R., Patel, P.R. and Reddy, M.S. (2013) Role of PGPR in Bioremediation of Heavy Metal Ions and Plant Growth-Promotion of Wheat and Peanut Grown in Heavy Metal Contaminated Soil. In: Recent Advances in Biofertilizers and Biofungicides (PGPR) for Sustainable Agriculture, Proceedings of 3rd Asian Conference on Plant Growth-Promoting Rhizobacteria (PGPR) and other Microbials, Manila, Philippines, 21-24 April 2013, Asian PGPR Society for Sustainable Agriculture.
|
[80]
|
Saleh, M. and Saleh, A.-G. (2006) Increased Heavy Metal Tolerance of Cowpea Plants by Dual Inoculation of an Arbuscular Mycorrhizal Fungi and Nitrogen-Fixer Rhizobium Bacterium. African Journal of Biotechnology, 5, 133-142.
|
[81]
|
Thies, J.E., Bohlool, B.B. and Singleton, P.W. (1992) Environmental Effects on Competition for Nodule Occupancy between Introduced and Indigenous Rhizobia and among Introduced Strains. Canadian Journal of Microbiology, 38, 493-500.
http://dx.doi.org/10.1139/m92-081
|
[82]
|
Weaver, R. and Frederick, L. (1974) Effect of Inoculum Rate on Competitive Nodulation of Glycine max L. Merrill. II. Field Studies. Agronomy Journal, 66, 233-236.
http://dx.doi.org/10.2134/agronj1974.00021962006600020015x
|
[83]
|
Hungria, M. and Vargas, M.A. (2000) Environmental Factors Affecting N2 Fixation in Grain Legumes in the Tropics, with an Emphasis on Brazil. Field Crops Research, 65, 151-164. http://dx.doi.org/10.1016/S0378-4290(99)00084-2
|
[84]
|
Peterson, H.L. and Loynachan, T.E. (1981) The Significance and Application of Rhizobium in Agriculture. In: Giles, K.L. and Atherly, A.G., Eds., Biology of the Rhizobiaceae, International Review of Cytology, Supplement 13, Academic Press, New York.
|
[85]
|
Ndakidemi, P.A., et al. (2014) Estimates of Rhizobia Population in Soils from Northern Tanzania Using the Most Probable Number (MPN) Counts. African Journal of Agricultural Science and Technology (AJAST), 2, 137-150.
|
[86]
|
Olsen, P., Sanda, E. and Keyser, H. (1996) The Enumeration and Identification of Rhizobial Bacteria in Legume Inoculant Quality Control Procedures. NifTAL Center, Paia, 96 p.
|
[87]
|
Woomer, P., Bennett, J. and Yost, R. (1990) Overcoming the Inflexibility of Most-Probable-Number Procedures. Agronomy Journal, 82, 349-353.
http://dx.doi.org/10.2134/agronj1990.00021962008200020035x
|
[88]
|
Zahran, H., et al. (2013) Identification of Rhizobial Strains Nodulating Egyptian Grain Legumes. International Microbiology, 16, 157-163.
|
[89]
|
Berrada, H. and Fikri-Benbrahim, K. (2014) Taxonomy of the Rhizobia: Current Perspectives. British Microbiology Research Journal, 4, 616-639.
http://dx.doi.org/10.9734/BMRJ/2014/5635
|
[90]
|
Berrada, H., Nouioui, I., Iraqui Houssaini, M., El Ghachtouli, N., Gtari, M. and Fikri Benbrahim, K. (2012) Phenotypic and Genotypic Characterizations of Rhizobia Isolated from Root Nodules of Multiple Legume Species Native of Fez, Morocco. African Journal of Microbiology Research, 6, 5314-5324.
|
[91]
|
Simon, Z., Mtei, K., Gessesse, A. and Ndakidemi, P.A. (2014) Isolation and Characterization of Nitrogen Fixing Rhizobia from Cultivated and Uncultivated Soils of Northern Tanzania. American Journal of Plant Sciences, 5, 4050-4067.
http://dx.doi.org/10.4236/ajps.2014.526423
|
[92]
|
Wolde-Meskel, E., Terefework, Z., Frostegard, A. and Lindstrom, K. (2005) Genetic Diversity and Phylogeny of Rhizobia Isolated from Agroforestry Legume Species in Southern Ethiopia. International Journal of Systematic and Evolutionary Microbiology, 55, 1439-1452. http://dx.doi.org/10.1099/ijs.0.63534-0
|
[93]
|
Valverde, A., Igual, J.M., Peix, A., Cervantes, E. and Velázquez, E. (2006) Rhizobium lusitanum sp. nov. a Bacterium That Nodulates Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology, 56, 2631-2637.
http://dx.doi.org/10.1099/ijs.0.64402-0
|
[94]
|
Macrae, A. (2000) The Use of 16S rDNA Methods in Soil Microbial Ecology. Brazilian Journal of Microbiology, 31, 77-82. http://dx.doi.org/10.1590/S1517-83822000000200002
|
[95]
|
Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: The Unseen Majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578-6583. http://dx.doi.org/10.1073/pnas.95.12.6578
|
[96]
|
Yao, Z.Y., Kan, F.L., Wang, E.T., Wei, G.H. and Chen, W.X. (2002) Characterization of Rhizobia That Nodulate Legume Species of the Genus Lespedeza and Description of Bradyrhizobium yuanmingense sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52, 2219-2230. http://dx.doi.org/10.1099/00207713-52-6-2219
|
[97]
|
Peter, J., Young, W. and Haukka, K.E. (1996) Diversity and Phylogeny of Rhizobia. New Phytologist, 133, 87-94. http://dx.doi.org/10.1111/j.1469-8137.1996.tb04344.x
|
[98]
|
Patel, J.B. (2001) 16S rRNA Gene Sequencing for Bacterial Pathogen Identification in the Clinical Laboratory. Molecular Diagnosis, 6, 313-321.
http://dx.doi.org/10.2165/00066982-200106040-00012
|
[99]
|
Germano, M.G., Menna, P., Mostasso, F.L. and Hungria, M. (2006) RFLP Analysis of the rRNA Operon of a Brazilian Collection of Bradyrhizobial Strains from 33 Legume Species. International Journal of Systematic and Evolutionary Microbiology, 56, 217-229.
http://dx.doi.org/10.1099/ijs.0.02917-0
|
[100]
|
Vinuesa, P., Silva, C., Lorite, M.J., Izaguirre-Mayoral, M.L., Bedmar, E.J. and Martínez-Romero, E. (2005) Molecular Systematics of Rhizobia Based on Maximum Likelihood and Bayesian Phylogenies Inferred from rrs, atpD, recA and nifH Sequences, and Their Use in the Classification of Sesbania Microsymbionts from Venezuelan Wetlands. Systematic and Applied Microbiology, 28, 702-716. http://dx.doi.org/10.1016/j.syapm.2005.05.007
|
[101]
|
Reller, L.B., Weinstein, M.P. and Petti, C.A. (2007) Detection and Identification of Microorganisms by Gene Amplification and Sequencing. Clinical Infectious Diseases, 44, 1108-1114. http://dx.doi.org/10.1086/512818
|
[102]
|
Haukka, K., Lindstrom, K., Peter, J. and Young, W. (1996) Diversity of Partial 16S rRNA Sequences among and within Strains of African Rhizobia Isolated from Acacia and Prosopis. Systematic and Applied Microbiology, 19, 352-359.
http://dx.doi.org/10.1016/S0723-2020(96)80062-2
|
[103]
|
Stackebrandt, E. and Goebel, B. (1994) Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic Bacteriology, 44, 846-849.
http://dx.doi.org/10.1099/00207713-44-4-846
|
[104]
|
Rosselló-Mora, R. (2006) DNA-DNA Reassociation Methods applied to Microbial Taxonomy and Their Critical Evaluation. In: Stackebrandt, E., Ed., Molecular Identification, Systematics, and Population Structure of Prokaryotes, Springer, Berlin, 23-50.
http://dx.doi.org/10.1007/978-3-540-31292-5_2
|
[105]
|
Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P. and Willems, A. (2008) Advantages of Multilocus Sequence Analysis for Taxonomic Studies: A Case Study Using 10 Housekeeping Genes in the Genus Ensifer (Including Former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology, 58, 200-214.
http://dx.doi.org/10.1099/ijs.0.65392-0
|