Investigation of Polyaniline Thin Film and Schottky Junction with Aluminium for Electrical and Optical Characterization


Polyaniline Powdered sample was chemically synthesized using aniline and doped with HCl. Ultra thin film and Schottky junction with Al metal have been fabricated from this powdered sample Ultrathin film of polyaniline shows amorphous nature of the film. Two activation energies of these films at two different temperatures regions within 25-120oC have been observed. Schottky Junction with Al meal shows that the diode ideality factor is much higher than unity. Barrier height of this Schottky junction is estimated to be around 0.61eV. C-V plot of the junction indicates that the carrier concentration is about 1015cm-3. There are various factors found to affect the junction to deviate from ideal Schottky behaviour.

Share and Cite:

P. Saikia and P. Sarmah, "Investigation of Polyaniline Thin Film and Schottky Junction with Aluminium for Electrical and Optical Characterization," Materials Sciences and Applications, Vol. 2 No. 8, 2011, pp. 1022-1026. doi: 10.4236/msa.2011.28138.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. K. Ram, O. Yang, V. Lahsangarh and M. Aldissi, “CO Gas Sensing from Ultrathin Nano-Composite Conducting Polymer Films,” Sensors and Actuators B, Vol. 106, 2005, pp. 750-757. doi:10.1016/j.snb.2004.09.027
[2] G. Liu and M. S. Freund, “New Approach for the Controlled Cross-Linking of Polyaniline: Synthesis and Char- acterization,” Macromolecule, Vol. 30, No. 19, 1997, pp. 5660-5665. doi: 10.1021/ma970469n.
[3] S. Koul, R. Chandra and S. K. Dhawan, “Conducting Polyaniline Composite: a Reusable Sensor Material for Aqueous Ammonia,” Sensors and Actuators B: Chemical, Vol. 75, No. 3, 2001, pp. 151-159. doi:10.1016/S0925-4005(00)00685-7
[4] N. Takami, A. Satoh, M. Hara and T. Ohsaki, “Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries,” Journal Electrochemical Socience, Vol. 142, 1995, pp. 371- 379. doi.10.1149/1.2044017
[5] J. Stejskal, P. Kratochvil and A. D. Jenkins, “The Formation of Polyaniline and the Nature of Its Structures,” Polymer, Vol. 37, No. 2, 1996, pp. 367-369. doi: 1016/0032-3861(96)81113-X
[6] G. K. Prasad, T. P. Radhakrishnan, D. S. Kumar and M. G. Krishna, “Ammonia Sensing Characteristics of Thin Film Based on Polyelectrolyte Templated Polyaniline,” Sensors and Actuators B: Chemical, Vol. 106, No. 2, 2005, pp. 626-631. doi: 10.1016/J. sub.2004.09.011.
[7] L. Ruangchuay, A. Sirivat and J. Schwank, “Selective Conductivity Response of Polypyrrole-based Sensor on Flammable Chemicals,” Reactive and Functional Polymer, Vol. 61, No. 1, 2004, pp. 11-22. doi.10.1016/j.reactfunctpolym.2004.03.004
[8] G. W. Lu, L. T. Qu and G. Q. Shi, “Electrochemical Fabrication of Neuron-type Networks Based on Crystalline Oligopyrene Nanosheets,” Electrochimica Acta, Vol. 51, No. 2, 2005, pp. 340-346. doi.10.1016/j.electacta-2005.04.043
[9] N. E. Agbor, M. C. Petty and A. P. Monkman, “Polyaniline Thinfilm for Gas Sensing,” Sensors and Actuators B: Chemical, Vol. 28, No. 3, 1995, pp. 173-179. doi: 10.1016/0925-4005(95)01725-9.
[10] Z. Mo, W. Qui, X. C. Yang and J. Yan, “Morphological Characterization and Kinetics Study of Polyaniline Film Formation by Emulsion Polymerization,” Journal of Polymer Research, Vol. 16, No. 1, 2009, pp. 39-43. doi.10.1007/s10965-008-9200-8
[11] J. H. Cheung, A. F. Fou and M. F. Rubner, “Molecular Self Assembly of Conducting Polymer,” Thin solid Films, Vol. 84, No. 1-3, 1994, pp. 985-989. doi.10.1016/0040-6090(94)9061-5
[12] M. Menon, C. G. Yoon, D. Moses and A. J. Heeger, “Handbook of Conductive Polymers,” T. A. Skotheim, R. L. Elsenbanmer and J. R. Reynold (Ed.), Marcel Dekker, New York, 1998.
[13] J. Stejskal and I. Sepuria, “Solid State Protonation and Electrical Conductivity of Polyaniline,” Macromolecule, Vol. 31, No. 7, 1998, pp. 2218-2222. doi: 10.1021/ma970823h
[14] D. C. Trivedi, “Hand Book of Organic Conductive Molecules and Polymer,” John Wiley & Sons Limited, Vol. 2, No. 1, 1997, p 505.
[15] P. Stakhira, V. Cherpak, D. Volynyuk, Z. Hotra, V Belukh, O. Aksimentyeva, B. Tsizh and L. Monastyrskyi, “Growth and Properties of Conducting Polyaniline Thin Films Obtained by Means of Ionic Sputtering in Crossed Electrical and Magnetic Field,” Review Advance Material Science, Vol. 23, 2010, pp. 180-184.
[16] X. He and W. Qi, “Ultrasonic Irradiation: A Noval Approach to Prepare Conductive Polyanuline/Nanocrystal- line Titanium Oxide Composites,” Chemistry Material, Vol. 14, No. 5, 2002, pp. 2158-2165. doi.10.1021/cm0109591
[17] B. Kim, J. Jae, H. Seung and J. Jinsoo, “Nanocomposite of Polyaniline and Na+-Montmorillonine Clay,” Macromolecule, Vol. 35, No. 4, 2002, pp. 1419-1423. doi: 10.1021/ma010497c
[18] P. G. Hill, J. Peter, S. Fort and R. Devis, “Novel Inorganic/Conjugated Polymer Nano-Composites,” Synthetic Metals, Vol. 76, No. 1-3, 1996, pp. 289-292. doi :10.1016/ 0379- 6779 (95)03473-w
[19] H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun and H. C. Kim, “Glucose Sensor Using a Micro Fabricated Electrode and Electropolymerized Bilayer Films,” Biosensors and Bioelectronics, Vol. 17, pp. 251-259. doi:10.1016/S0958-5663(01)00266-4
[20] Assadi, C. Svensson, M. Willander and O. Inganas, “Properties of the Planar Poly (3-octylthiophene)/Alum- inum Schottky Barrier Diode,” Journal of Applied Physics, Vol. 72, No. 7, 1992, pp. 2900-2908. doi: 10.1063/1.351491
[21] Pud, N. Ogurtsov, A. Korzhenko and G. Shapval, “Some Aspects of Preparation Methods and Properties of Polyaniline Blends and Composites with Organic Polymers,” Progress in Polymer Science, Vol. 28, No. 12, 2003, pp. 1701- 1753. doi.10.1016/j.progpolymsci.2003.08.001
[22] H. K. Chandhuri and D. S. Kelkar, “X-ray Diffraction Study of Doped Polyaniline,” Journal of Applied Polymer Science, Vol. 62, 1996, pp. 15-18. doi : 10.1002/ (SICI) 1097-4628(19961003)
[23] E. A. de Vasconcelos, E. F. da Silva Jr., J. M. G Laranjeira, W. M. de Azevedo, I. M. Pepe and A. F. da Silva, “Oplical and Electrical Characterization of the Band Structure of Polyaniline Nanofilms and Polyaniline/ Silicon Hefereojunctions,” Physica Status Solid C, Vol. 2, No. 8, 2005, pp. 2482-2985. doi: 10.1002/PSSC. 200460-725
[24] F. Yakuphanoglu, B. F. Senkal and A. Sarac, “Electrical Conductivity, Temperature Power, and Optical Properties of Organo-Soluble Polyaniline Organic Semiconductor,” Journal of Electronic Materials, Vol. 37, No. 6, 2008, pp. 930-934. doi: 10.1007/s 11664-008-0404-9
[25] H. Devendrappa, U. V. Subba Rao and M. V. N. Ambika Prasad, “Study of Dc Conductivity and Battery Application of Polyethylene Oxide/ Polyaniline and Its Composites,” Journal of Power Sources, Vol. 155, Issue 2, 2006 pp. 368-374. doi: 10.1016/J. Jpowsour 2005.50.014
[26] F. Yakuphanoglu and B. F. Senkal, “Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode,” Journal Physical Chemistry C, Vol. 111, 2007, pp. 1840-1846. doi.10.1021/jp0653050
[27] C. C. Wei, T. C. Wen and A. Gopalan, “Fabrication and Charactcuzation of schottlcy Junctions of Aluminium with Polyaniline Containing Hydrolysis Products,” Journal of Electrochemical Society, Vol. 151, No. 10, 2004, pp. F242-F247. doi:10.1149/1.1795255
[28] F. Yakuphanoglu and B. F. Senkal, “Current -voltage and Capacitance-voltage Characteristics of the ITO/Polyan- iline Doped Boron Trifloride/Al Schottly Diode,” Polymers for Advanced Technologies, Vol. 19, No. 12, 2008, pp 1882-1886. doi.10.1002/pat.1223
[29] S. Angappane, N. Rajeev Kimi, T. S. Natarajan, G. Rangarajan and B. Wessling, “Pani-PMMA Lend/Metal Schottly Barriers,” Thin Solid Films, Vol. 417, No. 1-2, 2002, pp. 202-205. doi: 10.1016/50040-6090(02) 00576 –X.
[30] Bantikassegn and O. Inganas, “Electronic Properties of Junctions between Aluminum and Doped Poly (3, 4-ethylenediony thiophone),” Thin Solid Films, Vol. 293, No. 1-2, 1997, pp. 138-143. doi: 10.1016/50040-6090(96) 08959 -4
[31] R. Gupta, S. C. K. Mishra, B. D. Malhotra, N. N. Beladakere and S. Chandra, “Metal/ Semiconductive Polymer Schottky Device,” Applied Physics Letters, Vol. 58, 1991, pp. 51-53. doi: 10.1063/1.104441.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.