[1]
|
J. C. Houk and S. P. Wise, “Distributed Modular Architectures Linking Basal Ganglia, Cerebellum, and Cere-Bral Cortex: Their Role in Planning and Controlling Action,” Cerebral Cortex, Vol. 5, No. 2, 1995, pp. 95-110.
doi: 10.1093/cercor/5.2.95
|
[2]
|
X. Lu, O. Hikosaka and S. Miyachi, “Role of Monkey Cerebellar Nuclei in Skill for Sequential Movement,” Journal of Neurophysiology, Vol. 79, No. 5, 1998, pp. 2245-2254.
|
[3]
|
K. Doya, “What are the Computations of the Cerebellum, the Basal Ganglia and the Cerebral Cortex?” Neural Networks, Vol. 12, No. 7-8, 1999, pp. 961-974.
doi:10.1016/S0893-6080(99)00046-5
|
[4]
|
J. C. Houk, “Agents of the mind,” Biological Cybernetics, Vol. 92, No. 6, 2005, pp. 427-437.
doi:10.1007/s00422-005-0569-8
|
[5]
|
E. I. Knudsen, “Supervised Learning in the Brain,” The Journal of Neuroscience, Vol. 14, No. 7, 1994. pp. 3985-3997.
|
[6]
|
T. V. P. Bliss and G. L. Collingridge, “A Synaptic Model of Memory: Long-Term Potentiation in the Hippo-Campus,” Nature, Vol. 32, No. 2, 1993, pp. 31-39.
doi:10.1038/361031a0
|
[7]
|
S. E. Hua and J. C. Houk, “Cerebellar Guidance of Premotor Network Development and Sensorimotor Learning,” Learning and Memory, Vol. 4, No. 1, 1997, pp. 63-76. doi:10.1101/lm.4.1.63
|
[8]
|
B. Girard, N. Tabareau, Q. C. Phama, A Berthoz and J. J. Slotine, “Where Neuroscience and Dynamic System Theory Meet Autonomous Robotics: A Contracting Basal Ganglia Model for Action Selection,” Neural Networks, Vol. 21, No. 4, 2008, pp. 628-641.
doi:10.1016/j.neunet.2008.03.009
|
[9]
|
R. Bogacz and K. Gurney. “The Basal Ganglia and Cortex Implement Optimal Decision Making between Alternative Actions,” Neural Computation, Vol. 19, No. 2, 2007, pp. 442-477. doi:10.1162/neco.2007.19.2.442
|
[10]
|
W. M. Jonathan, “The Basal Ganglia: Focused Selection and Inhibition of Competing Motor Programs,” Progress in Neurobiology, Vol. 50, No. 4, 1996, pp. 381-425.
doi:10.1016/S0301-0082(96)00042-1
|
[11]
|
M. X. Cohen and M. J. Frank, “Neurocomputational Models of Basal Ganglia Function in Learning, Memory and Choice,” Behavioural Brain Research, Vol. 199, No. 1, 2009, pp. 141-156. doi:10.1016/j.bbr.2008.09.029
|
[12]
|
B. W. Balleine, M. Liljeholm and S. B. Ostlund, “The Integrative Function of the Basal Ganglia in Instrumental Conditioning,” Behavioural Brain Research, Vol. 199, No. 1, 2009, pp. 43-52.
doi:10.1016/j.bbr.2008.10.034
|
[13]
|
P. Dean and J. Porrill, “Adaptive-Filter Models of the Cerebellum: Computational Analysis,” The Cerebellum, Vol. 7, No. 4, 2008, pp. 567-571.
doi:10.1007/s12311-008-0067-3
|
[14]
|
P. Dean, J. Porrill, C. F. Ekerot E and J. Henrik, “The Cerebellar Microcircuit as an Adaptive Filter: Experimental and Computational Evidence,” Nature Reviews Neuroscience, Vol. 11, No. 1, 2010, pp. 30-43.
doi:10.1038/nrn2756
|
[15]
|
M. Kawato, “Feedback-Error-Learning Neural Network for Supervised Motor Learning,” Elsevier, Amsterdam, 1990.
|
[16]
|
M. Kawato and H. Gomi, “A Computational Model of Four Regions of the Cerebellum Based on Feeback-Error-Learning,” Biological Cybernetics, Vol. 68, No, 2, 1992, pp. 95-103.
doi:10.1007/BF00201431
|
[17]
|
D. Joel, Y. Niv and E. Ruppin, “Actor-Critic Models of the Basal Ganglia: New Anatomical and Computational Perspectives,” Neural Network, Vol. 15, No. 4-6, 2002, pp. 535-547. doi:10.1016/S0893-6080(02)00047-3
|
[18]
|
M. Khamassi, L. Lachèze, B. Girard, A. Berthoz and A. Guillot, “Actor-Critic Models of Reinforcement Learning in the Basal Ganglia: from Natural to Artificial Rats,” Adaptive Behavior, Vol. 13, No. 2, 2005, pp. 131-148.
doi:10.1177/105971230501300205
|
[19]
|
B. Girard, N. Tabareau, Q. C. Phama, A. Berthoz and J. J. Slotine, “Where Neuroscience and Dynamic System Theory Meet Autonomous Robotics: A Contracting Basal Ganglia Model for Action Selection,” Neural Networks, Vol. 21, No. 4, 2008, pp. 628-641.
doi:10.1016/j.neunet.2008.03.009
|
[20]
|
K. Doya, “Complementary Roles of Basal Ganglia and Cerebellum in Learning and Motor Control,” Current Opinion in Neurobiology, Vol. 10, No. 6, 2000, pp. 732-739. doi:10.1016/S0959-4388(00)00153-7
|
[21]
|
C. Ye, N. H. C. Yung and D. W. Wang, “A Fuzzy Controller with Supervised Learning Assisted Reinforcement Learning Algorithm for Obstacle Avoidance,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 33, No. 1, 2003, pp. 17-27.
doi:10.1109/TSMCB.2003.808179
|
[22]
|
M. J. Er and C. Deng, “Obstacle Avoidance of a Mobile Robot Using Hybrid Learning Approach,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 3, 2005, pp. 898-905. doi:10.1109/TIE.2005.847576
|
[23]
|
M. T. Rosenstein and A. G. Barto, “Learning and Approximate Dynamic Programming: Scaling Up to the Real World,” IEEE Press and John Wiley & Sons, Inc., New York, 2004.
|
[24]
|
J. A. Clouse and P. E. Utgoff, “A Teaching Method for Reinforcement Learning,” Proceedings of the Nineth International Conference on Machine Learning, San Francisco, 1992, pp. 92-101.
|
[25]
|
H. Benbrahim, and J. A. Franklin, “Biped Dynamic Walking Using Reinforcement Learning,” Robotics and Autonomous Systems, Vol. 22, No. 3-4, 1997, pp. 283-302. doi:10.1016/S0921-8890(97)00043-2
|
[26]
|
K. Pathak, J. Franch and S. K. Agrawal, “Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization,” IEEE Transactions on Robotics, Vol. 21, No. 3, 2005, pp. 505-513.
doi:10.1109/TRO.2004.840905
|
[27]
|
A Blankespoor and R Roemer, “Experimental Verification of the Dynamic Model for a Quarter Size Self-Balancing Wheelchair,” Proceedings of the 2004 American Control Conference, Boston, 2004, pp. 488-492.
|
[28]
|
F Grasser, A. D’Arrigo, S. Colombi and A. C. Rufer, “JOE: A Mobile, Inverted Pendulum,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, 2002, pp. 107-114. doi:10.1109/41.982254
|
[29]
|
D. P. Anderson, “NBot Balancing Robot, a Two Wheel Balancing Robot,” 2003.
http://www.geology.smu.edu/~dpa-ww/robo/nbot/index. html.
|
[30]
|
C.-H. Chiu, “The Design and Implementation of a Wheeled Inverted Pendulum Using an Adaptive Output Recurrent Cerebellar Model Articulation Controller,” IEEE Transactions on Industrial Electronics, Vol, 57, No. 5, 2010, pp. 1814-1822. doi:10.1109/TIE.2009.2032203
|
[31]
|
S. Jung and S. S. Kim, “Control Experiment of a Wheel-Driven Mobile Inverted Pendulum Using Neural Network,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 2, 2008, pp. 297-303.
doi:10.1109/TCST.2007.903396
|
[32]
|
L. Q. Han and X. Y. Tu, “Study of Artificial Brain Based on Multi-Centrum Self-Coordination Mechanism,” Science Press, Beijing, 2009.
|
[33]
|
C. Chen and R. F. Thompson, “Temporal Specificity of Long-Term Depression in Parallel Fiber - Purkinje Synapses in Rat Cerebellar Slice,” Learning and Memmory, Vol. 2, No. 3-4, 1995, pp. 185-198.
doi:10.1101/lm.2.3-4.185
|
[34]
|
B. F. Skinner, “The Behavior of Organisms,” Appleton-Century-Crofts, New York, 1938.
|
[35]
|
I. P. Pavlov, “Conditioned Reflexes,” Oxford University Press, Oxford, 1927.
|
[36]
|
B. Brembs, W. Plendl, “Double Dissociation of PKC and AC Manipulations on Operant and in Drosophila,” Current Biology, Vol. 18, No. 15, 2008, pp. 1168-1171.
doi:10.1016/j.cub.2008.07.041
|
[37]
|
C. W. Yao and G. C. Chen, “A Emotion Development Agent Model Based on OCC Model and Operant Conditioning,” 2001 International Conferences on Info-Tech and Info-Net Proceedings, Beijing, 2001, pp. 246-250.
|
[38]
|
K.Itoh, H. Miwa, M. Matsumoto, M. Zecca, M. Takanobu, H. Roccella, S. Carrozza, M. C. Dario and P. Takanishi, “Behavior Model of Humanoid Robots Based on Operant Conditioning,” Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots IEEE/RAS International Conference on Humanoid Robots, Tsukuba, 2005, pp. 220-225.
|
[39]
|
J. S. Leng, L. Jain and C. Fyfe, “Convergence Analysis on Temporal Difference Learning. International Journal of Innovative Computing,” Information and Control, Vol. 5, No. 4, 2009, pp. 913-922.
|
[40]
|
X. G. Ruan, “Neural Computational Science: Simulation Brain Function at the Cellular Level,” National Defense Industry Press, Beijing, 2006.
|
[41]
|
M. Murata and S. Ozawa, “A Reinforcement Learning Model Using Deterministic State-Action Sequences,” International Journal of Innovative Computing, Information and Control, Vol. 6, No. 2, 2010, pp. 577-590.
|
[42]
|
J. Randlov, A. G. Barto and M. T. Rosenstein, “Combining Reinforcement Learning with a Local Control Algorithm,” Proceedings of the Seventeenth International Conference on Machine Learning, Vol. 1, No. 4, 2000, pp. 775-782.
|
[43]
|
C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions,” Neural Network, Vol. 9, No. 7, 1996, pp. 1199-1211. doi:10.1016/0893-6080(96)00132-3
|
[44]
|
A. V. Lazo and P. Rathie, “On the Entropy of Continuous Probability Distributions,” IEEE Transactions on Information Theory, Vol. 24, No. 1, 1978, pp. 120-122.
doi:10.1109/TIT.1978.1055832
|