[1]
|
Abramov, A.Y., Canevari, L. and Duchen, M.R. (2004) Beta-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase. The Journal of Neuroscience, 24, 565-575. http://dx.doi.org/10.1523/JNEUROSCI.4042-03.2004
|
[2]
|
Kienlen-Campard, P., Miolet, S., Tasiaux, B. and Octave, J.-N. (2002) Intracellular Amyloid-Beta 1-42, but Not Extracellular Soluble Amyloid-Beta Peptides, Induces Neuronal Apoptosis. The Journal of Biological Chemistry, 277, 5666-15670. http://dx.doi.org/10.1074/jbc.M200887200
|
[3]
|
Wei, W., Norton, D.D., Wang, X. and Kusiak, J.W. (2002) Abeta 17-42 in Alzheimer’s Disease Activates JNK and Caspase-8 Leading to Neuronal Apoptosis. Brain, 125, 2036-2043. http://dx.doi.org/10.1093/brain/awf205
|
[4]
|
Cao, W., Song, H.J., Gangi, T., Kelkar, A., Antani, I., Garza, D. and Konsolaki, M. (2008) Identification of Novel Genes That Modify Phenotypes Induced by Alzheimer’s β-Amyloid Overexpression in Drosophila. Genetics, 178, 1457-1471. http://dx.doi.org/10.1534/genetics.107.078394
|
[5]
|
Schapira, A.H. and Jenner, P. (2011) Etiology and Pathogenesis of Parkinson’s Disease. Movement Disorders, 26, 1049-1055. http://dx.doi.org/10.1002/mds.23732
|
[6]
|
Byers, B., Cord, B., Nguyen, H.N., Schüle, B., Fenno, L., Lee, P.C., Deisseroth, K., Langston, J.W., Pera, R.R. and Palmer, T.D. (2011) SNCA Triplication Parkinson’s Patient’s iPSC-Derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 6, e26159. http://dx.doi.org/10.1371/journal.pone.0026159
|
[7]
|
Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E. and Bush, A.I. (1999) The A Beta Peptide of Alzheimer’s Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction. Biochemistry, 38, 7609-76167. http://dx.doi.org/10.1021/bi990438f
|
[8]
|
Bush, A.I. (2003) The Metallobiology of Alzheimer’s Disease. Trends in Neurosciences, 26, 207-214. http://dx.doi.org/10.1016/S0166-2236(03)00067-5
|
[9]
|
Rimando, A.M. and Perkins-Veazie, P.M. (2005) Determination of Citrulline in Watermelon Rind. Journal of Chromatography A, 1078, 196-200. http://dx.doi.org/10.1016/j.chroma.2005.05.009
|
[10]
|
Altas, P.M., Kizil, G., Kizil, M., Ketani, A. and Haris, P.I. (2011) Protective Effect of Diyarbakir Watermelon Juice on Carbon Tetrachloride-Induced Toxicity in Rats. Food and Chemical Toxicology, 49, 2433-2438. http://dx.doi.org/10.1016/j.fct.2011.06.064
|
[11]
|
Naz, A., Butt, M.S., Sultan, M.T., Qayyum, M.N.N. and Niaz, R.S. (2014) Watermelon Lycopene and Allied Health Claims. EXCLI Journal, 13, 650-666.
|
[12]
|
Poduri, A., Rateri, D., Saha, S., Saha, S. and Daugherty, A. (2012) Citrullus lanatus “Sentinel” (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor-Deficient Mice. The Journal of Nutritional Biochemistry, 24, 882-886.
|
[13]
|
Linder, J.E. and Promislow, D.E. (2009) Cross-Generational Fitness Effects of Infection in Drosophila melanogaster. Fly, 3, 143-150. http://dx.doi.org/10.4161/fly.8051
|
[14]
|
Crowther, D.C., Kinghorn, K.J., Miranda, E., Page, R., Curry, J.A., Duthie, F.A., Gubb, D.C. and Lomas, D.A. (2005) Intraneuronal Aβ, Non-Amyloid Aggregates and Neurodegeneration in a Drosophila Model of Alzheimer’s Disease. Neuroscience, 132, 123-135. http://dx.doi.org/10.1016/j.neuroscience.2004.12.025
|
[15]
|
Nilsberth, C., Westlind-Danielsson, A., Eckman, C.B., Condron, M.M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D.B., Younkin, S.G., Naslund, J. and Lannfelt, L. (2001) The “Arctic” APP Mutation (E693G) Causes Alzheimer’s Disease by Enhanced Aβ Protofibril Formation. Nature Neuroscience, 4, 887-893. http://dx.doi.org/10.1038/nn0901-887
|
[16]
|
Wu, G., Collins, J.K., Perkins-Veazie, P., Siddiq, M., Dolan, K.D., Kelly, K.A., Heaps, C.L. and Meininger, C.J. (2007) Dietary Supplementation with Watermelon Pomace Juice Enhances Arginine Availability and Ameliorates the Metabolic Syndrome in Zucker Diabetic Fatty Rats. Journal of Nutrition, 137, 2680-2685.
|
[17]
|
Abramoff, M.D., Magalhaes, P.J. and Ram, S.J. (2004) Image Processing with ImageJ. Biophotonics International, 11, 36-42.
|
[18]
|
Pesah, Y., Pham, T., Burgess, H., Middlebrooks, B., Verstreken, P., Zhou, Y., Harding, M., Bellen, H. and Mardon, G. (2004) Drosophila parkin Mutants Have Decreased Mass and Cell Size and Increased Sensitivity to Oxygen Radical Stress. Development, 131, 2183-2194. http://dx.doi.org/10.1242/dev.01095
|
[19]
|
Leulier, F., Ribeiro, P.S., Palmer, E., Tenev, T., Takahashi, K., et al. (2006) Systematic in Vivo RNAi Analysis of Putative Components of the Drosophila Cell Death Machinery. Cell Death & Differentiation, 13, 1663-1674. http://dx.doi.org/10.1038/sj.cdd.4401868
|
[20]
|
Vander Heiden, M.G., Chandel, N.S., Williamson, E.K., Schumacker, P.T. and Thompson, C.B. (1997) Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria. Cell, 91, 627-637. http://dx.doi.org/10.1016/S0092-8674(00)80450-X
|
[21]
|
Vander Heiden, M.G. and Thompson, C.B. (1999) Bcl-2 Proteins: Regulators of Apoptosis or of Mitochondrial Homeostasis? Nature Cell Biology, 1, E209-E216. http://dx.doi.org/10.1038/70237
|
[22]
|
Godenschwege, T., Forde, R., Davis, C.P., Paul, A., Beckwith, K. and Duttaroy, A. (2009) Mitochondrial Superoxide Radicals Differentially Affect Muscle Activity and Neural Function. Genetics, 183, 175-184. http://dx.doi.org/10.1534/genetics.109.103515
|
[23]
|
Miller, M.S., Lekkas, P., Braddock, J.M., Farman, G.P., Ballif, B.A., Irving, T.C., Maughan, D.W. and Vigoreaux, J.O. (2008) Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila. Biophysical Journal, 95, 2391-2401. http://dx.doi.org/10.1529/biophysj.108.130005
|
[24]
|
Yan, L.J. and Sohal, R.S. (1998) Mitochondrial Adenine Nucleotide Translocase Is Modified Oxidatively during Aging. Proceedings of the National Academy of Sciences of the United States of America, 95, 12896-12901.
|
[25]
|
O’Brien, S.J. and Shimada, Y. (1974) The α-Glycerophosphate Cycle in Drosophila Melanogaster. IV. Metabolic, Ultrastructural, and Adaptive Consequences of αGpdh-l “Null” Mutations. The Journal of Cell Biology, 63, 864-882.
|
[26]
|
Levenbook, L. and Williams, C.M. (1956) Mitochondria in the Flight Muscles of Insects. III. Mitochondrial Cytochrome c in Relation to the Aging and Wing Beat Frequency of Flies. The Journal of General Physiology, 39, 497-512.
|
[27]
|
Hong, Y.K., Park, S.H., Lee, S., Hwang, S., Lee, M.J., Kim, D., Lee, J.H., Han, S.Y., Kim, S.T., Kim, Y.K., Jeon, S., Koo, B.S. and Cho, K.S. (2011) Neuroprotective Effect of SuHeXiang Wan in Drosophila Models of Alzheimer’s Disease. Journal of Ethnopharmacology, 134, 1028-1032. http://dx.doi.org/10.1016/j.jep.2011.02.012
|
[28]
|
Cai, Z.L., Wang, C.Y., Jiang, Z.J., Li, H.H., Liu, W.X., Gong, L.W., Xiao, P. and Li, C.H. (2013) Effects of Cordycepin on Y-Maze Learning Task in Mice. European Journal of Pharmacology, 714, 249-253. http://dx.doi.org/10.1016/j.ejphar.2013.05.049
|
[29]
|
Seo, J.S., Yun, J.H., Baek, I.S., Leem, Y.H., Kang, H.W., Cho, H.K., Lyu, Y.S., Son, H.J. and Han, P.L. (2010) Oriental Medicine Jangwonhwan Reduces Aβ(1-42) Level and β-Amyloid Deposition in the Brain of Tg-APPswe/PS1dE9 Mouse Model of Alzheimer Disease. Journal of Ethnopharmacology, 128, 206-212. http://dx.doi.org/10.1016/j.jep.2010.01.014
|
[30]
|
Kaushal, D. and Kansal, V.K. (2012) Probiotic Dahi Containing Lactobacillus acidophilus and Bifidobacterium bifidum Alleviates Age-Inflicted Oxidative Stress and Improves Expression of Biomarkers of Ageing in Mice. Molecular Biology Reports, 39, 1791-1799. http://dx.doi.org/10.1007/s11033-011-0920-1
|
[31]
|
Lee, K.A. and Lee, W.J. (2014) Drosophila as a Model for Intestinal Dysbiosis and Chronic Inflammatory Diseases. Developmental & Comparative Immunology, 42, 102-110. http://dx.doi.org/10.1016/j.dci.2013.05.005
|
[32]
|
Grompone, G., Martorell, P., Llopis, S., González, N., Genovés, S., Mulet, A.P., Fernández-Calero, T., Tiscornia, I., Bollati-Fogolín, M., Chambaud, I., Foligné, B., Montserrat, A. and Ramón, D. (2012) Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans. PLoS ONE, 12, e52493. http://dx.doi.org/10.1371/journal.pone.0052493
|
[33]
|
Schriner, S.E., Katoozi, N.S., Pham, K.Q., Gazarian, M., Zarban, A. and Jafari, M. (2012) Extension of Drosophila Lifespan by Rosa damascena Associated with an Increased Sensitivity to Heat. Biogerontology, 13, 105-117. http://dx.doi.org/10.1007/s10522-011-9357-0v
|
[34]
|
Peng, C., Chan, H.Y., Huang, Y., Yu, H. and Chen, Z.Y. (2011) Apple Polyphenols Extend the Mean Lifespan of Drosophila Melanogaster. Journal of Agricultural and Food Chemistry, 59, 2097-2106. http://dx.doi.org/10.1021/jf1046267
|
[35]
|
Long, J.G., Gao, H.X., Sun, L.J., Liu, J.K. and Zhao, W.X. (2009) Grape Extract Protects Mitochondria from Oxidative Damage and Improves Locomotor Dysfunction and Extends Lifespan in a Drosophila Parkinson’s Disease Model. Rejuvenation Research, 12, 321-331. http://dx.doi.org/10.1089/rej.2009.0877
|
[36]
|
Li, Y.M., Chan, H.Y., Huang, Y. and Chen, Z.Y. (2007) Green Tea Catechins Upregulate Superoxide Dismutase and Catalase in Fruit Flies. Molecular Nutrition & Food Research, 51, 546-554. http://dx.doi.org/10.1002/mnfr.200600238
|
[37]
|
Peng, C., Chan, H.Y., Li, Y.M., Huang, Y. and Chen, Z.Y. (2009) Black Tea Theaflavins Extend the Lifespan of Fruit Flies. Experimental Gerontology, 44, 773-783. http://dx.doi.org/10.1016/j.exger.2009.09.004
|
[38]
|
Jansen, R.L., Brogan, B., Whitworth, A.J. and Okello, E.J. (2014) Effects of Five Ayurvedic Herbs on Locomotor Behaviour in a Drosophila melanogaster Parkinson’s Disease Model. Phytotherapy Research, 28, 1789-1795. http://dx.doi.org/10.1002/ptr.5199
|
[39]
|
Jones, W.D., Cayirlioglu, P., Kadow, I.G. and Vosshall, L.B. (2006) Two Chemosensory Receptors Together Mediate Carbon Dioxide Detection in Drosophila. Nature, 445, 86-90. http://dx.doi.org/10.1038/nature05466
|
[40]
|
Kwon, J.Y., Dahanukar, A., Weiss, L.A. and Carlson, J.R. (2007) The Molecular Basis of CO2 Reception in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104, 3574-3578.
|
[41]
|
Scott, K., Brady Jr., R., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C. and Axel, R. (2001) A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila. Cell, 104, 661-673. http://dx.doi.org/10.1016/S0092-8674(01)00263-X
|
[42]
|
Budick, S.A. and Dickinson, M.H. (2006) Free-Flight Responses of Drosophila melanogaster to Attractive Odors. Journal of Experimental Biology, 209, 3001-3017. http://dx.doi.org/10.1242/jeb.02305
|