Structural and Dielectric Properties of Sintering Zinc Oxide Bulk Ceramic
Mariem Chaari, Adel Matoussi, Zouheir Fakhfakh
DOI: 10.4236/msa.2011.27105   PDF    HTML     7,939 Downloads   13,810 Views   Citations

Abstract

Undoped zinc oxide (ZnO) has been prepared at various growth temperatures by conventional sintering process. The morphology and crystalline properties of ZnO pellets were examined by scanning electron microscopy, atomic force microscopy and X-ray diffraction. It has revealed that the grain size and surface roughness tends to increase by increasing the sintering temperature. XRD analysis showed that all samples are polycrystalline with a hexagonal wurtzite structure. The alignment of ZnO grains along the (10.0) plane was enhanced as the temperature increased. Interestingly, the compressive stress was found to decrease drastically from –0.62 GPa at 700°C to –0.2 MPa at 1000°C. This improvement in film structure seems to enhance considerably the dielectric properties for the samples sintering at high temperatures. Results show an increase of dielectric constant and a decrease of electrical resistivity when increasing the sintering temperature.

Share and Cite:

Chaari, M. , Matoussi, A. and Fakhfakh, Z. (2011) Structural and Dielectric Properties of Sintering Zinc Oxide Bulk Ceramic. Materials Sciences and Applications, 2, 764-769. doi: 10.4236/msa.2011.27105.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Gledhil, A. Grimm, A. Allsop, T. Koehler, C. Camus, L. Lux-Steiner and C.-H. Fisher, “A Spray Pyrolysis Route to the Undoped ZnO Layer of Cu(In,Ga)(S,Se)2 Solar Cells,” Thin Solid Films, Vol. 517, No. 7, 2009, pp. 2309-2311. doi:10.1016/j.tsf.2008.10.110
[2] S. Major and K. L. Chopra, “Indium-Doped Zinc Oxide Films as Transparent Electrodes for Solar Cells,” Solar Energy Materials, Vol. 17, No. 5, 1988, pp. 319-327. doi:10.1016/0165-1633(88)90014-7
[3] S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan,“Sensing Characteristics of Tin-Doped ZnO Thin ?lms as NO2 Gas Sensor,” Sensors and Actuators B: Chemical, Vol. 107, No. 1, 2005, pp. 379-386. doi:10.1016/j.snb.2004.10.030
[4] T. K. Gupta and J. Am, “Application of Zinc Oxide Varistors,” American Ceramatic Society, Vol. 73, No. 7, 1990, pp. 1817-1840. doi:10.1111/j.1151-2916.1990.tb05232.x
[5] S. Anas, R.V. Mangalaraja, M. Poothayal, S. K. Shukla and S. Ananthakumar, “Direct Synthesis of Varistor-Grade Doped Nanocrystalline ZnO and Its Densification through a Step-Sintering Technique,” Acta Materialia, Vol. 55, No. 17, 2007, pp. 5792-5801. doi:10.1016/j.actamat.2007.06.047
[6] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, “Fabrication and Characterization of n-ZnO/p-AlGaN Heterojunction Light-Emitting Diodes on 6H-SiC Substrates,” Applied Physics Letters, Vol. 83, No. 23, 2003, pp. 4719-4721. doi:10.1063/1.1632537
[7] H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Y. L. Wang and F. Ren, “Phosphorus Doped ZnO Light Emitting Diodes Fabricated via Pulsed Laser Deposition,” Applied Physics Letters, Vol. 92, No. 11, 2008, pp. 112108-112110. doi:10.1063/1.2900711
[8] X. H. Yu, J. Ma, F. Ji, Y. H. Wang, X. J. Zhang and H. L. Ma,“Influence of Annealing on the Properties of ZnO: Ga Films Prepared by Radio Frequency Magnetron Sputtering,” Thin Solid Films, Vol. 483, No. 1-2, 2005, pp. 296-300. doi:10.1016/j.tsf.2005.01.013
[9] J. Hu and R. G. Gordon, “Atmospheric Pressure Chemical Vapor Deposition of Gallium Doped Zinc Oxide Thin Films from Diethyl Zinc, Water, and Triethyl Gallium,” Journal of Applied Physics, Vol. 72, No. 11, 1992, pp. 5381-5392. doi:10.1063/1.351977
[10] K. Y. Cheong, N. Muti and S. R. Ramanan, “Electrical and optical studies of ZnO: Ga Thin Films Fabricated via the Sol-gel Technique,” Thin solid Film, Vol. 410, No. 1-2, 2002, pp.142-146. doi:10.1016/S0040-6090(02)00286-9
[11] A. Zaier, F. Oum Elaz, F. Lakfif, A. Kabir, S. Boudjadar and M. S. Aida, “A Novel Synthesis of Nanostructured ZnO via Thermal Oxidation of Zn Nanowires Obtained by a Green Route,” Metirial Science in Semiconductor Processing, Vol. 12 ,2009, pp. 279-284.
[12] J. Nause and B. Nemeth, “Pressurized Melt Growth of ZnO Boules,” Semiconductor Science and Technology, Vol. 20, No. 4, 2005, p. S45. doi:10.1088/0268-1242/20/4/005
[13] K. Jacobs, D. Schulz, D. Klimm and S. Ganschow, “Melt Growth of ZnO Bulk Crystals in Ir Crucibles,” Solid State Sciences, Vol. 12, No. 3, 2010, pp. 307-310. doi:10.1016/j.solidstatesciences.2009.05.015
[14] Y. Caglar, S. Aksoy, S. Ilican and M. Cagmar, “Crystalline Structure and Morphological Properties of Undoped and Sn Doped ZnO Thin Films,” Superlattices and Microstructures, Vol. 46, 2009, pp. 469-475. doi:10.1016/j.spmi.2009.05.005
[15] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction,” 3rd Edition, Prentice Hall, Upper Saddle River, 2001.
[16] F. Hamdani, A. Botchkarev, W. Kim, H. Morko?, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel and P. Hemenger, “Optical Properties of GaN Grown on ZnO by Reactive Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 70, No. 4, 1997, pp. 467-469. doi:10.1063/1.118183
[17] A. Umar, S. H. Kim, Y. B. Hahn, “Sea-Urchin Like ZnO Nanostructures on Si by Oxidation of Zn Metal Powders: Structural and Optical Properties,” Superlattices and Microstructures, Vol. 39, No. 1-4, 2006, pp.145-152. doi:10.1016/j.spmi.2005.08.067
[18] N. Wang, J. Li, H. R. Peng and G. C. Li, “Synthesis of ZnO Nanostructures Composed of Nanosheets with Controllable Morphologies,” Crystal Research Technology, Vol. 44, No. 3, 2009, pp. 341-345. doi:10.1002/crat.200800445
[19] L. Kumari and W. Z. Li, “Synthesis, Structure and Optical Properties of Zinc Oxide Hexagonal Microprisms,” Crystal Research Technology, Vol. 45, No. 3, 2010, pp. 311-315. doi:10.1002/crat.200900600
[20] E. M. Bachari, G. Baud, S. B. Amor and M. Jacquet, “Structural and Optical Properties of Sputtered ZnO Films,” Thin Solid Films, Vol. 348, No. 1-2, 1999, pp. 165-172. doi:10.1016/S0040-6090(99)00060-7
[21] T. V. Vimalkumar, N. Poornima, C. S. Kartha and K. P. Vijayakumar, “On Tuning the Orientation of Grains of Spray Pyrolysed ZnO Thin Films,” Applied Surface Science, Vol. 256, No. 20, 2010, pp. 6025-6028. doi:10.1016/j.apsusc.2010.03.113
[22] M. Matsuoka and K. Ono, “Photochromism and Anomalous Crystallite Orientation of ZnO Films Prepared by a Sputtering‐Type Electron Cyclotron Resonance Microwave Plasma,” Applied Physics Letters, Vol. 53, No. 15, 1988, pp. 1393-1395. doi:10.1063/1.99987
[23] T. P. Rao, M. C. S. Kumar, A. Safarullaa, V. Ganesan, S. R. Barman and C. Sanjeeviraja, “Physical Properties of ZnO Thin ?lms Deposited at Various Substrate Temperatures Using Spray Pyrolysis,” Physica B: Condensed Matter, Vol. 405, No. 9, 2010, pp. 2226-2231. doi:10.1016/j.physb.2010.02.016
[24] M. K.Puchet, P. Y. Timbrell and R. N. Lamb, “Post Deposition Annealing of Radio Frequency Magnetron Sputtered ZnO Films,” Journal of Vacuum Science & Technology A, Vol. 14, No. 4, 1996, pp. 2220-2230. doi:10.1116/1.580050
[25] T. P. Rao and M. C. S. Kumar, “Effect of Thickness on Structural, Optical and Electrical Properties of Nanostructured ZnO Thin ?lms by Spray Pyrolysis,” Applied Surface Science, Vol. 255, No. 8, 2009, pp. 4579-4584. doi:10.1016/j.apsusc.2008.11.079
[26] H. Li, J. Wang, H. Liu, H. Zhang and X. Li, “Zinc Oxide Films Prepared by Sol-Gel Method,” Journal of Crystal Growth, Vol. 275, No. 1-2, 2005, pp. 943-946. doi:10.1016/j.jcrysgro.2004.11.098
[27] J. W. Zhai, L. Y. Zhang, X. Yao, “The Dielectric Properties and Optical Propagation Loss of c-axis Oriented ZnO Thin Films Deposited by Sol-gel Process,” Ceramics International, Vol. 26, No. 8. 2000, pp. 883-885. doi:10.1016/S0272-8842(00)00031-6
[28] H. Gomez, A. Maldonado, M. de la L. Olvera and D. R. Acosta, “Gallium-Doped ZnO Thin Films Deposited by Chemical Spray,” Solar Energy Materials & Solar Cells, Vol. 87, No. 1-4, 2005, pp.107-116. doi:10.1016/j.solmat.2004.07.016
[29] M. de la L. Olvera, A. Maldonado, R. Asomoza and M. Meléndez-Lira, “Effect of the Substrate Temperature and Acidity of the Spray Solution on the Physical Properties of F-Doped ZnO Thin Films Deposited by Chemical Spray,” Solar Energy Materials & Solar Cells, Vol. 71, No. 1, 2002, pp. 61-71. doi:10.1016/S0927-0248(01)00044-7
[30] A. Zaier, F. Oum El az, F. Lakfif, A. Kabir, S. Boudjadar and M. S. Aida, “Effects of the Substrate Temperature and Solution Molarity on the Structural opto-Electric Properties of ZnO Thin Films Deposited by Spray Pyrolysis,” Materials Science in Semiconductor Processing, Vol. 12, No. 6, 2009, pp. 207-211. doi:10.1016/j.mssp.2009.12.002
[31] C. H. Pandis, N. Brilis, D. Tsamakis, H. A. Ali, S. Krishnamoorthy, A. A. Iliadis, “Role of Low O2 Pressure and Growth Temperature on Electrical Transport of PLD Grown ZnO Thin ?lms on Si Substrates,” Solid-State Electronics, Vol. 50, No. 6, 2006, pp. 1119-1123. doi:10.1016/j.sse.2006.04.025

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.