Particle Size Control, Sinterability and Piezoelectric Properties of BaTiO3 Prepared by a Novel Composite-Hydroxide-Mediated Approach


The size of BaTiO3 particles was controlled by adjusting the molar ratio of the starting materials (BaCl2 + TiO2) to mineralizer (NaOH + KOH) during a composite-hydroxide-mediated approach using a novel hydrothermal reaction apparatus with a rolling system. The mean particle diameter decreased from 500 to 50 nm with a decrease in the (BaCl2 + TiO2)/(NaOH + KOH) molar ratio from 0.44 to 0.04. The powders were sintered by normal one-step sintering at 1200°C for 5 h and two-step sintering in which temperature was raised to 1200°C at first and then decreased to 1100°C and kept at 1100°C for 5 h. The BaTiO3 particles prepared with the (BaCl2 + TiO2)/(NaOH + KOH) molar ratio of 0.32 and 0.22 showed excellent sinterability and could be sintered to almost full theoretical density by both method. The sintered bodies obtained by both methods showed similarly excellent dielectric and piezoelectric properties.

Share and Cite:

Xie, Y. , Kimura, T. , Yin, S. , Hashimoto, T. , Tokano, Y. , Sasaki, A. and Sato, T. (2011) Particle Size Control, Sinterability and Piezoelectric Properties of BaTiO3 Prepared by a Novel Composite-Hydroxide-Mediated Approach. Materials Sciences and Applications, 2, 757-763. doi: 10.4236/msa.2011.27104.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. L. Polla and F. F. Lorraine, “Pr?Cessing and Characterization of Piezoelectric Materials and Intergation into Microelectromechanical Systems,” Annual Review Mater Sciense, Vol. 28, 1998, pp. 563-597. doi:10.1146/annurev.matsci.28.1.563
[2] T. Takenaka and H. Nagata, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics,” Journal Europe Ceram Science, Vol. 25, No.12, 2005, pp. 2693-2700. doi:10.1016/j.jeurceramsc.2005.03.125
[3] H. I. Won, H. H. Nersisyan and C. W. Won, “Low TemPerature Solid-Phase Synthesis of Tetragonal BaTiO3 Powders and Its Characterization,” Materials Letters, Vol. 61, No.7, 2007, pp. 1492-1496. doi:10.1016/j.matlet.2006.07.059
[4] Z. X. Hua, Z. J. Min, Z. S. Hua, L. Z. Guo, M. N. Ben and H. Dietrich, “BaTiO3 Nancrystals: Hydrothermal Synthesis and Structural Characterization,” Journal of Crystal Growth, Vol. 283, No. 3-4, 2005, pp. 553-562. doi:10.1016/j.jcrysgro.2005.05.080
[5] K. Matsui, T. Noguchi, N. M. Islam and Y. Hakuta, “Hayashi, Rapid Synthesis of BaTiO3 Nanoparticles in Supercritical Water by Continuous Hydrothermal FLow Reaction System,” Journal of Crystal Growth, Vol. 310, No. 3, 2008, pp. 2584-2589. doi:10.1016/j.matlet.2006.06.006
[6] T. K. Mandal, “Characterization of Tetragonal BaTiO3 Nanopowders Prepared with a New Soft Chemistry Route,” Material Leters, Vol. 61, No. 3, 2007, pp. 850-854. doi:10.1016/j.matlet.2006.06.006
[7] Y. Ma, E. Vileno, S. L. Suib and P. K. Dutta, “Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating,” Chemical Material, Vol. 9, No. 12, 1997, pp. 23-31. doi:10.1021/cm970371n
[8] H. Liu, C. Hu and Z. L. Wang, “Compoite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides,” Nano Letters, Vol. 6, No. 7, 2006, pp. 1535-1540. doi:10.1021/nl061253e
[9] M. Jing, H. C. Guo, L. Hong and X. Y. Feng, “BaTiO3 Nancubes: Size-Selective Formation and Structure Analysis,” Material Letters, Vol. 62, No. 2, 2008, pp. 235-238. doi:10.1016/j.matlet.2007.05.009
[10] S. Qin, D. Liu, H. Liu and Z. Zuo, “Size-Dependent Selective Etching Mechanism: Cavity Formation on Barium Titanate Nancubes,” Journal Physical Chemical C, Vol. 112, No. 44, 2008, pp. 17171-17174. doi:10.1021/jp8057993
[11] Y. Hotta, K. Tsunekawa, C. Duran, K. Sato, T. Nagaoka and K. Watari, “Low-Temperature Sintering of BaTiO3 Powders Prepared by a Hydrothermal Prcess with Ball Milling System,” Materials Science Engineering A, Vol. 475, No. 1-2, 2008, pp. 57-61. doi:10.1016/j.msea.2006.12.138
[12] Y. Hotta, C. Duran, K. Sato, T. Nagaoka and K. Watari, “Densification and Grain Growth in BaTiO3 Ceramics Fabricated from Nanopowders Synthesized by Ball-Milling Assisted Hydrothermal Reaction,” Journal Europe Ceram Science, Vol. 28, No. 3, 2008, pp. 599-604. doi:10.1016/j.jeurcerams?C.2007.07.007
[13] H. Takatoshi, S. Toru, S. Tsugio, Y. Shu and X. Yahong, Japan Patent, Tokugan 2009, 61852.
[14] Y. Zhang, J. Han and L. Hu, “The Effect of Sintering Additive on Fracture Behavior of Carbon-Whisker-Reinforced Silicon Carbide Composites,” Maerial Science Engineering A, Vol. 480, No. 1-2, 2008, pp. 62-67. doi:10.1016/j.msea.2007.08.034
[15] K. Chunga, J. Yoo, C. Lee, D. Lee, Y. Jeong and H. Lee, “Microstructural Dielectric and Piezoelectric Properties of Low-Temperature Sintering Pb(Co1/2W1/2)O3-Pb(Mn1/2-Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics with the Addition of Li2CO3 and Bi2O3,” Sensor Actuat A, Vol. 125, No. 2, 2006, pp. 340-345. doi:10.1016/j.sna.2005.06.018
[16] H. You, S. Koo, J. Ha, J. Koh and J. Park, “Microstructure and Dielectric Properties of Li2CO3 Doped 0.7 (Ba,Sr)TiO3-0.3MgO Ceramics,” Current Applied Physics, Vol. 9, No. 5, 2009, pp. 875-879. doi:10.1016/j.cap.2008.08.008
[17] T. Karaki, K. Yan and M. Adachi, “Barium Titanate Piezoelectric Ceramics Manufactured by Two-Step Sintering,” Japenese Journal Applied Phyical, Vol. 46, 2007, pp. 7035-7038. doi:10.1143/JJAP.46.7035
[18] I. Wei Chen and X. H. Wang, “Sintering Dense Nancrystalline Ceramics Without Final-Stage Grain Growth,” Nature, Vol. 404, 2000, pp. 168-171. doi:10.1038/35004548
[19] A. Polotai, K. Breece, E. Dickey and C. Randallw, “A Novel Approach to Sintering Nan?Crystalline Barium Titanate Ceramics,” Journal of the American Ceramic Sciety, Vol. 88, No. 11, 2005, pp. 3008-3012. doi:10.1111/j.1551-2916.2005.00552.x
[20] G. Arit, D. hennings and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” Applied Physical, Vol. 58, 1985, pp. 1619-1625.
[21] V. Buscaglia, M. T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny and J. Petzelt, “Grain Size And Grain Boundary-Related Effects on the Properties of Nancrystalline Barium Titanate Ceramics,” Journal Europe Ceram Sciense, Vol. 26, No. 14, 2006, pp. 2889-2898. doi:10.1016/j.jeurcerams?C.2006.02.005
[22] S. Zhao, H. Wu and Q. Sun, “Study on PSN-PZN-PZT Quaternary Piezoelectric Ceramics Near the Morphotropic Phase Boundary,”Material Science Engineering B, Vol. 123, No. 11, 2005, pp. 203-210. doi:10.1016/j.matlet.2004.12.041
[23] Y. Li, W. Chen, Q. Xu, J. Zhou and X. Gu, “Piezoelectric and Ferroelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5Ti-O3-BaTiO3 Piezoelectric Ceramics,” Material Letters, Vol. 59, No. 11, 2005, pp. 1361-1364. doi:10.1016/j.matlet.2004.12.041
[24] Y. H. Xie, S. Yin, T. Hashimoto, H. Kimura and T. Sato, “Microwave-Hydrothermal Synthesis of Nano-Sized Sn2+-Doped Batio3 Powders and Dielectric Properties of Corresponding Ceramics Obtained by Spark Plasma Sintering Method,” Journal Material Science, Vol. 44, No. 18, 2009, pp. 4834-4839. doi:10.1007/s10853-009-3737-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.