Electrical Transport Properties of La-BaTiO3
A. I. Ali, Saleh H. Kaytbay
DOI: 10.4236/msa.2011.27099   PDF    HTML     6,243 Downloads   10,239 Views   Citations


The Electrical properties as a function of temperature were investigated at elevated temperatures (300 K - 800 K) on quenched samples of donor doped La-BaTiO3 system. The resistivity and carrier concentration increased with increasing temperature. The mobility of the sample shows exponential temperature dependence and the value of mobility is in well agreement with the theoretical values. From the conductivity data the activation energy was calculated (0.036 eV) and revealed that the conduction mechanism in this system is thermally activated.

Share and Cite:

Ali, A. and Kaytbay, S. (2011) Electrical Transport Properties of La-BaTiO3. Materials Sciences and Applications, 2, 716-720. doi: 10.4236/msa.2011.27099.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. D. Cullity, “Element of X-ray Diffraction,” Addison- Wesley, London, 1959, p. 329.
[2] C. N. Berglund and W. S. Baer, “Electron Transport in Single-Domain, Ferroelectric Barium Titanate,” Physical Review, Vol. 157, No. 2, 1966, pp. 358-366. doi:org/10.1103/PhysRev.157.358
[3] E. K. Chang, A. Metha and D. M. Smyth, “Electro- Chemical Society,” In: H. L. Tuller and D. M. Smyth, Eds., Proceedings of the. Symposium on Electro-Cera- mics and Solid State Ionics, Princeton, 1988, p. 35.
[4] ASTM, “International Standard Technology Measurements,” V10.50, Designation F76, Annual Book of ASTM Standards, 1999.
[5] J. Nowotny and M. Rekas, “Defect Structure, Electrical Properties and Transport in Barium Titanate VII. Chemical diffusion in Nb-doped BaTiO3,” Ceramics International, Vol. 49, 1991, pp. 135-154.
[6] J. Y. Kim, C. R. Song and H. I. Yoo, “Nonohmic Properties of Zinc Oxide Ceramics,” Journal of Electro Ceramics, Vol. 1, 1997, p. 27. doi:org/10.1023/A:1009994230779
[7] C. R. Song and H. I. Yoo, “Solid State Ionics: Science &Technology,” In: B. V. R. Chowdari, et al., Eds., World Scientific Publishing Co., Singapore, 1998, p. 149.
[8] C. R. Song and H. I. Yoo, “Chemical Diffusivity of BaTiO3?δ: I. Experimental Determination,” Solid State Ionics, Vol. 120, No. 1-4, 1999, pp. 141-153. doi:org/10.1016/S0167-2738(99)00012-0
[9] C. R. Song and H. I. Yoo, “Chemical Diffusivity of BaTiO3-δ: Defect Chemical Analysis,” Physical Review B, Vol. 61, No. 6, 2000, pp. 3975-3982. doi:org/10.1103/PhysRevB.61.3975
[10] C. R. Song and H. I. Yoo, “Chemical Diffusivity of BaTiO3?δ: III. Conductivity–Nonstoichiometry (δ) Correlation in a Mixed n/p Regime,” Solid State Ionics, Vol. 124, No. 3-4, 1999, pp. 289-299. doi:org/10.1016/S0167-2738(99)00226-X
[11] C. R. Song and H. I. Yoo, “Chemical Diffusivity of BaTiO3?δ: IV, Acceptor-Doped Case,” Journal of the Ame- rican Ceramic Society, Vol. 83, No. 4, 2000, pp. 773-779. doi:org/10.1111/j.1151-2916.2000.tb01273.x
[12] H. I. Yoo and C. R. Song, “Thermoelectricity of BaTiO3+δ,” Journal of Electroceramics, Vol. 6, No. 1, 2001, pp. 61-74. doi:org/10.1023/A:1011425920963
[13] H. I. Yoo, C. R. Song and D. K. Lee, “Electronic Carrier Mobility of BaTiO3,” Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1259-1263. doi:org/10.1016/S0955-2219(03)00504-1
[14] Y. Su and G. J. Weng, “The Shift of Curie Temperature and Evolution of Ferroelectric Domain in Ferroelectric Crystals,” Journal Mechanical & Physical Solid, Vol. 53, No. 9, 2005, pp. 2071-2099. doi:org/10.1016/j.jmps.2005.03.008
[15] R. Moos and K. Heinz, “Electronic Transport Properties of Sr1?xLaxTiO3 Ceramics,” Journal of Applied Physics, Vol. 80, No. 1, 1996, p. 393. doi:org/10.1063/1.362796
[16] R. Moos and W. Menesklon, “Hall Mobility of Undoped N-type Conducting Strontium Titanate Single Crystals between 19 K and 1373 K,” Applied Physics A: Materials Science & Processing, Vol. 61, No. 4, 1995, pp. 389-395. doi:org/10.1007/BF01540113
[17] T. Kolodiazhnyi, A. Petric, M. Niewczas, C. Bridges, A. Safa-Sefat and J. Greedan, “Thermoelectric power, Hall effect, and Mobility of N-type BaTiO3,” Physical Review B, Vol. 68, No. 8, 2003, pp. 1-5. doi:org/10.1103/PhysRevB.68.085205
[18] Z. L. Cheng and B. Bergman, “Processing and Structure Relationships in Electro Spinning of Ceramic Fiber,” Jour- nal of American Ceramic Society, Vol. 25, No. 4, 2005, p. 441.
[19] J. S. Forrester, E. H. Kisi and A. J. Studer, “Effect of Interface Mechanical Properties on Pullout in a SiCO3 Fiber Reinforced Lithium Aluminum,” Journal of Ame- rican Ceramic Society, Vol. 25, No. 4, 2005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.