Compact Operators on Hilbert Spaces


In this paper, we obtain some results on compact operators. More specially, we prove that if T is a unitary operator on a Hilbert space H, then it is compact if and only if H has a finite dimension. Also, we prove that, if H is a Hilbert space with Heine-Borel property, then K(H) = BL(H).

Share and Cite:

Nozari, S. (2014) Compact Operators on Hilbert Spaces. Open Access Library Journal, 1, 1-3. doi: 10.4236/oalib.1100853.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Spurny, J. (2007) A Note on Compact Operators on Normed Linear Spaces. Expositiones Mathematicae, 25, 261-263.
[2] De la Sen, M. (2013) On a Class of Self-Adjoint Compact Operators in Hilbert Spaces and Their Relations with Their Finite-Range Truncations. Abstract and Applied Analysis, 2013, 1-15.
[3] Baker, J.M. (1979) A Note On Compact Operators Which Attain Their Norm. Pacific Journal of Mathematics, 82, 319-325.
[4] Thamban Nair, M. (2002) Functional Analysis-A First Course. Prentice-Hall, New Delhi.
[5] Rudin, W. (1973) Functional Analysis. McGraw-Hill, New York.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.