Bioactive Compounds and Properties of Seaweeds—A Review


In last three decades the discovery of metabolite and biological activities from macroalgae has been increased significantly. Many sophisticated modern research tools are available for making of chemical compound but there are still many natural bioactive compounds in the womb of nature which is a mystery, scientist are still working to find out more biologically active compounds. Bioactive substances from seaweeds currently receive the more attention from the pharmaceutical companies for the drug development as well as the researchers. Seaweeds are taking majority of attention from scientists because of its phenomenon bioactive compounds and its properties like anti-viral, anti-tumor, anti-inflammatory and anti-lipedimic and may more properties. This current review described mainly substances like metabolite, properties, and types of seaweeds. Emphasis is given to main metabolite and properties of seaweeds.

Share and Cite:

Pal, A. , Kamthania, M. and Kumar, A. (2014) Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Library Journal, 1, 1-17. doi: 10.4236/oalib.1100752.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Anantharaman, P. (2002) Manual on Identification of Seaweed. All India Coordinate Project on Survey and Inventorization of Coastal and Marine Biodiversity. Journal of the Marine Biological Association of India, 29, 1-9.
[2] Uppangala, N. (2010) Seaweeds Show Anti-Cancer Activity: Alternative Cancer Therapy. Publish Biotechnology Articles or Industry News.
[3] Holdt, S.L. and Kraan, S. (2011) Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. Journal of Applied Phycology, 23, 543-597.
[4] Kumar, C.S., Ganesan, P., Suresh, P.V. and Bhaskar, N. (2008) Seaweeds as a Source of Nutritionally Beneficial Compounds—A Review. Journal of Food Science and Technology, 45, 1-13.
[5] Murata, M. and Nakazoe, J. (2001) Production and Use of Marine Algae in Japan. Japan Agricultural Research Quarterly, 35, 281-290.
[6] Haugan, J.A. and Liaaen-Jensen, S. (1994) Algal Carotenoids 54. Carotenoids of Brown-Algae (Phaeophyceae). Biochemical Systematics and Ecology, 22, 31-41.
[7] Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409.
[8] Sayanova, O.V. and Napier, J.A. (2004) Eicosapentaenoic Acid: Biosynthetic Routs and the Potential for Synthesis in Transgenic Plants. Phytochemistry, 65, 147-158.
[9] Funk, C.D. (2001) Prostaglandins and Leukotrienes: Advances in Eicosanoid Biology. Science, 294, 1871-1875.
[10] Napier, J.A., Michaelson, L.V. and Stobart, A.K. (1999) Plant Desaturases: Harvesting the Fat of the Land. Current Opinion in Plant Biology, 2, 123-127.
[11] Nettleton, J.A. (1995) Omega-3 Fatty Acids and Health. Chapman & Hall, New York.
[12] Wen, Z.-Y. and Chen, F. (2003) Heterothrophic Production of Eicosapentaenoic Acid by Microalgae. Biotechnology Advances, 21, 273-294.
[13] Sanchez-Machado, D.I., Lopez-Hernandez, J., Paseiro-Losada, P. and Lopez-Cervantes, J. (2004) An HPLC Method for the Quantification of Sterols in Edible Seaweeds. Biomedical Chromatography, 18, 183-190.
[14] Whittaker, M.H., Frankos, V.H., Wolterbeek, A.M.P. and Waalkens-Berendsen, D.H. (2000) Effects of Dietary Phytosterols on Cholesterol Metabolism and Atherosclerosis: Clinical and Experimental Evidence. American Journal of Medicine, 109, 600-601.
[15] Solomons, N.W. and Bulux, J. (1994) Plant Sources of Pro-Vitamin A and Human Nutriture. Nutrition Reviews, 51, 199-204.
[16] Polivka, T. and Sundström, V. (2004) Ultrafast Dynamics of Carotenoid Excited States from Solution to Natural and Artificial Systems. Chemical Reviews, 104, 2021-2071.
[17] Zhang, H., Huang, D. and Cramer, W.A. (1999) Stoichiometrically Bound β-Carotene in the Cytochrome b6f Complex of Oxygenic Photosynthesis Protects against Oxygen Damage. The Journal of Biological Chemistry, 274, 1581-1587.
[18] Lobban, C.S. and Harrison, P.J. (1994) Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, 384 p.
[19] Haugan, J.A. and Liaaen-Jensen, S. (1994) Algal Carotenoids 54. Carotenoids of Brown Algae (Phaeophyceae). Biochemical Systematics and Ecology, 22, 31-41.
[20] Pinto, E., Catalani, L.H., Lopes, N.P., DiMascio, P. and Colepicolo, P. (2000) Peridinin as the Major Biological Carotenoid Quencher of Singlet Oxygen in Marine Algae Gonyaulax polyedra. Biochemical and Biophysical Research Communications, 268, 496-500.
[21] McHugh, D.J. (1987) Production and Utilization of Products from Commercial Seaweeds. FAO Fisheries Technical Paper No. 288, 1-189.
[22] Tseng, C.K. (2001) Algal Biotechnology Industries and Research Activities in China. Journal of Applied Phycology, 13, 375-380.
[23] Mouritsen, O.G. (2009) Tang-grøntsager fra havet. Nyt Nordisk Forlag Arnold Busck, Copenhagen, 284 p (in Danish).
[24] Lahaye, M. and Kaeffer, B. (1997) Seaweed Dietary Fibres: Structure, Physico-Chemical and Biological Properties Relevant to Intestinal Physiology. Sciences des Aliments, 17, 563-584.
[25] Lahaye, M. (1991) Marine-Algae as Sources of Fibers—Determination of Soluble and Insoluble Dietary Fiber Contents in Some Sea Vegetables. Journal of the Science of Food and Agriculture, 54, 587-594.
[26] Dawczynski, C., Schubert, R. and Jahreis, G. (2007) Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chemistry, 103, 891-899.
[27] McHugh, D.J. (2003) A Guide to the Seaweed Industry. FAO Fisheries Technical Paper 441, Rome, 105 p.
[28] Lee, J.B., Hayashi, K., Hashimoto, M., Nakano, T. and Hayashi, T. (2004) Novel Antiviral Fucoidan from Sporophyll of Undaria pinnatifida (Mekabu). Chemical and Pharmaceutical Bulletin, 52, 1091-1094.
[29] Amano, H., Kakinuma, M., Coury, D.A., Ohno, H. and Hara, T. (2005) Effect of a Seaweed Mixture on Serum Lipid Level and Platelet Aggregation in Rats. Fisheries Science, 71, 1160-1166.
[30] Jeon, Y.J., Athukorala, Y. and Lee, J. (2005) Characterization of Agarose Product from Agar Using DMSO. Algae, 20, 61-67.
[31] Ghosh, T., Chattopadhyay, K., Marschall, M., Karmakar, P., Mandal, P. and Ray, B. (2009) Focus on Antivirally Active Sulfated Polysaccharides: From Structure-Activity Analysis to Clinical Evaluation. Glycobiology, 19, 2-15.
[32] Urbano, M.G. and Goñi, I. (2002) Bioavailability of Nutrients in Rats Fed on Edible Seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a Source of Dietary Fibre. Food Chemistry, 76, 281-286.
[33] FAO (2008) FAO Statistics.
[34] Rasmussen, R.S. and Morrissey, M.T. (2007) Marine Biotechnology for Production of Food Ingredients. In: Taylor, S.L., Ed., Advances in Food and Nutrition Research, 52, Elsevier, New York, 237-292.
[35] Michel, C. and Macfarlane, G.T. (1996) Digestive Fates of Soluble Polysaccharides from Marine Macroalgae: Involvement of the Colonic Microflora and Physiological Consequences for the Host. Journal of Applied Bacteriology, 80, 349-369.
[36] Hemmingson, J.A., Furneaux, R.H. and Murray-Brown, V.H. (1996) Biosynthesis of Agar Polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydrate Research, 287, 101-115.
[37] Enoki, T., Sagawa, H., Tominaga, T., Nishiyama, E., Koyama, N., Sakai, T. and Kato, I. (2003) Drugs, Foods or Drinks with the Use of Algae-Derived Physiologically Active Substances. US Patent No. 20,030,105,029. US Patent and Trademark Office, Washington DC.
[38] Fernandez, L.E., Valiente, O.G., Mainardi, V., Bello, J.L., Velez, H. and Rosado, A. (1989) Isolation and Characterization of an Antitumor Active Agar-Type Polysaccharide of Gracilaria dominguensis. Carbohydrate Research, 190, 77-83.
[39] Chen, H.M., Zheng, L. and Yan, X.J. (2005) The Preparation and Bioactivity Research of Agaro-Oligosaccharides. Food Technology and Biotechnology, 43, 29-36.
[40] Goncalves, A.G., Ducatti, D.R., Duarte, M.E. and Noseada, M.D. (2002) Sulfated and Pyruvylated Disaccharide Alditols Obtained from a Red Seaweed Galactan: ESIMS and NMR Approaches. Carbohydrate Research, 337, 2443-2453.
[41] Van de Velde, F., Antipova, A.S., Rollema, H.S., Burova, T.V., Grinberg, N.V., Pereira, L., Gilsenan, P.M., Tromp, R.H., Rudolph, B. and Grinberg, V.Y. (2005) The Structure of κ/ι-Hybrid Carrageenans: II. Coil-Helix Transition as a Function of Chain Composition. Carbohydrate Research, 340, 1113-1129.
[42] Antonopoulos, A., Favetta, P., Helbert, W. and Lafosse, M. (2005) On-Line Liquid Chromatography Electrospray Ionization Mass Spectrometry for the Characterization of κ- and ι-Carrageenans. Application to the Hybrid ι-/ν-carrageenans. Analytical Chemistry, 77, 4125-4136.
[43] Zhou, G.F., Sun, Y.P., Xin, X., Zhang, Y.N., Li, Z.E. and Xu, Z.H. (2004) In Vivo Antitumor and Immunomodulation Activities of Different Molecular Weight Lambda-Carrageenans from Chondrus ocellatus. Pharmacological Research, 50, 47-53.
[44] Zhou, G.F., Sheng, W.X., Yao, W.H. and Wang, C.H. (2006) Effect of Low Molecular λ-Carrageenan from Chondrus ocellatus on Antitumor H-22 Activity of 5-Fu. Pharmacological Research, 53, 129-134.
[45] Carlucci, M.J., Pujol, C.A., Ciancia, M., Noseda, M.D., Matulewicz, M.C., Damonte, E.B. and Cerezo, A.S. (1997) Antiherpetic and Anticoagulant Properties of Carrageenans from the Red Seaweed Gigartina skottsbergii and Their Cyclized Derivatives: Correlation between Structure and Biological Activity. International Journal of Biological Macromolecules, 20, 97-105.
[46] Luescher-Mattli, M. (2003) Algae, a Possible Source for New Drugs in the Treatment of HIV and Other Viral Diseases. Current Medicinal Chemistry, 2, 219-225.
[47] Shanmugam, M. and Mody, K.H. (2000) Heparinoid-Active Sulphated Polysaccharides from Marine Algae as Potential Blood Anticoagulant Agents. Current Science, 79, 1672-1683.
[48] Witvrouw, M. and De Clercq, E. (1997) Sulfated Polysaccharides Extracted from Sea Algae as Potential Antiviral Drugs. General Pharmacology: The Vascular System, 29, 497-511.
[49] Andrade, L.R., Salgado, L.T., Farina, M., Pereira, M.S., Mourão, P.A. and Amado Filho, G.M. (2004) Ultrastructure of Acidic Polysaccharides from the Cell Walls of Brown Algae. Journal of Structural Biology, 145, 216-225.
[50] Arasaki, S. and Arasaki, T. (1983) Low Calorie, High Nutrition Vegetables from the Sea to Help You Look and Feel Better (Vol. 60). Japan Publications, Tokyo.
[51] Kim, I.H. and Lee, J.H. (2008) Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus from Macroalgae. Journal of Industrial and Engineering Chemistry, 14, 568-572.
[52] Nishide, E. and Uchida, H. (2003) Effects of Ulva Powder on the Ingestion and Excretion of Cholesterol in Rats. In: Chapman, A.R.O., Anderson, R.J., Vreeland, V.J. and Davison, I.R., Eds., Proceedings of the 17th International Seaweed Symposium, Oxford University Press, Oxford, 165-168.
[53] Burtin, P. (2003) Nutritional Value of Seaweeds. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2, 498-503.
[54] Ito, K. and Tsuchida, Y. (1972) The Effect of Algal Polysaccharides on Depressing of Plasma Cholesterol Level in Rats. Proceeding of the Seventh International Seaweed Symposium, Sapporo, 8-12 August 1971, 451-455.
[55] Kiriyama, S., Okazaki, Y. and Yoshida, A. (1969) Hypocholesterolemic Effect of Polysaccharides and Polysaccharide-Rich Foodstuffs in Cholesterol-Fed Rats. Journal of Nutrition, 97, 382-388.
[56] Lamela, M., Anca, J., Villar, R., Otero, J. and Calleja, J.M. (1989) Hypoglycemic Activity op Several Seaweed Extracts. Journal of Ethnopharmacology, 27, 35-43.
[57] Panlasigui, L.N., Baello, O.Q., Dimatangal, J.M. and Dumelod, B.D. (2003) Blood Cholesterol and Lipid-Lowering Effects of Carrageenan on Human Volunteers. Asia Pacific Journal of Clinical Nutrition, 12, 209-214.
[58] Potin, P., Bouarab, K., Kupper, F. and Kloareg, B. (1999) Oligosaccharide Recognition Signals and Defence Reactions in Marine Plant-Microbe Interactions. Current Opinion in Microbiology, 2, 276-283.
[59] Mayer, A.M.S. and Lehmann, V.K.B. (2001) Marine Pharmacology in 1999: Antitumor and Cytotoxic Compounds. Anticancer Research, 21, 2489-2500.
[60] Mayer, A.M.S. and Hamann, M.T. (2004) Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous System and Other Miscellaneous Mechanisms of Action. Marine Biotechnology, 6, 37-52.
[61] Smit, A.J. (2004) Medicinal and Pharmaceutical Uses of Seaweed Natural Products: A Review. Journal of Applied Phycology, 16, 245-262.
[62] Witvrouw, M., Reymen, D., Haines, H., Matulewicz, M.C., Cerezo, A., Coto, C.E. and De Clercq, E. (1994) Antiviral Activity of a Sulfated Polysaccharide from the Red Seaweed Nothogenia fastigiata. Biochemical Pharmacology, 47, 2187-2192.
[63] Damonte, E., Neyts, J., Pujol, C.A., Snoeck, R., Andrei, G., Ikeda, S., Witvrouw, M., Reymen, D., Haines, H., Matulewicz, M.C., Cerezo, A., Coto, C.E. and De Clercq, E. (1994) Antiviral Activity of a Sulphated Polysaccharide from the Red Seaweed Nothogenia fastigiata. Biochemical Pharmacology, 47, 2187-2192.
[64] Kolender, A.A., Matulewicz, M.C. and Cerezo, A.S. (1995) Structural Analysis of Antiviral Sulfated α-d-(1→3)-Linked Mannans. Carbohydrate Research, 273, 179-185.
[65] De Clercq, E. (1996) Chemotherapy of Human Immunodeficiency Virus (HIV) Infection: Anti-HIV Agents Targeted at Early Stages in the Virus Replicative Cycle. Biomedicine & Pharmacotherapy, 50, 207-215.
[66] De Clercq, E. (2000) Current Lead Natural Products for the Chemotherapy of Human Immunodeficiency Virus (HIV) Infection. Medicinal Research Reviews, 20, 323-349.<323::AID-MED1>3.0.CO;2-A
[67] Nakashima, H., Kido, Y., Kobayashi, N., Motoki, Y., Neushul, M. and Yamamoto, N. (1987) Antiretroviral Activity in a Marine Red Alga; Reverse Transcriptase Inhibition by an Aqueous Extract of Schizymenia pacifica. Journal of Cancer Research and Clinical Oncology, 113, 413-416.
[68] Nakashima, H., Kido, Y., Kobayashi, N., Motoki, Y., Neushul, M. and Yamamoto, N. (1987) Purification and Characterization of an Avian Myeloblastosis and Human Immunodeficiency Virus Reverse Transcriptase Inhibitor, Sulfated Polysaccharides Extracted from Sea Algae. Antimicrobial Agents and Chemotherapy, 31, 1524-1528.
[69] Wu, S.C., Kang, S.K., Kazlowski, B., Wu, C.J. and Pan, C.L. (2012) Antivirus and Prebiotic Properties of Seaweed-Oligosaccharide-Lysates Derived from Agarase AS-II. Journal of the Fisheries Society of Taiwan, 39, 11-21.
[70] Malhotra, R., Ward, M., Bright, H., Priest, R., Foster, M.R., Hurle, M., Blair, E. and Bird, M. (2003) Isolation and Characterization of Potential Respiratory Syncytial Virus Receptor(s) on Epithelial Cells. Microbes and Infection, 5, 123-133.
[71] Sugawara, I., Itoh, W., Kimura, S., Mori, S. and Shimada, K. (1989) Further Characterization of Sulfated Homopolysaccharides as Anti-HIV Agents. Experientia, 45, 996-998.
[72] Feldman, S.C., Reynaldi, S., Stortz, C.A., Cerezo, A.S. and Damonte, E.B. (1999) Antiviral Properties of Fucoidan Fractions from Leathesia difformis. Phytomedicine, 6, 335-340.
[73] Majczak, G.A.H., Richartz, R.R.T.B., Duarte, M.E.R. and Noseda, M.D. (2003) Antiherpetic Activity of Heterofucans Isolated from Sargassum stenophyllum (Fucales, Phaeophyta). In: Chapman, A.R.O., Anderson, R.J., Vreeland, V.J. and Davison, I.R., Eds., Proceedings of the 17th International Seaweed Symposium, Oxford University Press, Oxford, 169-174.
[74] Ponce, N.M.A., Pujol, C.A., Damonte, E.B., Flores, M.L. and Stortz, C.A. (2003) Fucoidans from the Brown Seaweed Adenocystis sutricularis: Extraction Methods, Antiviral Activity and Structural Studies. Carbohydrate Research, 338, 153-165.
[75] Baba, M., Snoeck, R., Pauwels, R. and De Clercq, E. (1988) Sulfated Polysaccharides Are Potent and Selective Inhibitors of Various Enveloped Viruses, Including Herpes Simplex Virus, Cytomegalovirus, Vesicular Stromatitis Virus, and Human Immunodeficiency Virus. Antimicrobial Agents and Chemotherapy, 32, 1742-1145.
[76] Oehninger, S., Clark, G.F., Acosta, A.A. and Hodgen, G.D. (1991) Nature of the Inhibitory Effect of Complex Saccharide Moieties on the Tight Binding of Human Spermatozoa to the Human Zona Pellucida. Fertility and Sterility, 55, 165-169.
[77] Lincoln, R.A., Strupinski, K. and Walker, J.M. (1991) Bioactive Compounds from Algae. Life Chemistry Reports, 8, 97-183.
[78] Kjelleberg, S. and Steinberg, P. (2001) Surface Warfare in the Sea. Microbiology Today, 28, 134-135.
[79] Høiby, N. (2002) Understanding Bacterial Biofilms in Patients with Cystic Fibrosis: Current and Innovative Approaches to Potential Therapies. Journal of Cystic Fibrosis, 1, 249-254.
[80] Rasmussen, T.B., Manefield, M., Andersen, J.B., Eberl, L., Anthoni, U., Christophersen, C., Steinberg, P., Kjelleberg, S. and Givskov, M. (2000) How Delisea pulchra Furanones Affect Quorum Sensing and Swarming Motility in Serratia liquefaciens MG1. Microbiology, 146, 3237-3244.
[81] Stefanov, K., Konaklieva, M., Brechany, E.Y. and Christie, W.W. (1988) Fatty Acid Composition of Some Algae from the Black Sea. Phytochemistry, 27, 3495-3497.
[82] Gerwick, W.H. and Bernart, M.W. (1993) Eicosanoids and Related Compounds from Marine Algae. In: Attaway, D.H. and Zaborsky, O.R., Eds., Marine Biotechnology, 1, Pharmaceutical and Bioactive Natural Products, Plenum Press, New York, 101-152.
[83] Noguchi, T., Matsui, T., Miyazawa, K., Asakawa, M., Iijima, N., Shida, Y., Fuse, M., Hosaka, Y., Kirigaya, C., Watabe, K., Usui, S. and Fukagawa, A. (1994) Poisoning by the Red Alga “Ogonori” (Gracilaria verrucosa) on the Nojima Coast, Yokohama, Kanagawa Prefecture, Japan. Toxicon, 32, 1533-1538.
[84] Gregson, R.P., Marwood, J.F. and Quinn, R.J. (1979) The Occurrence of Prostaglandins PGE2 and PGF2α in a Plant— The Red Alga Gracilaria lichenoides. Tetrahedron Letters, 20, 4505-4506.
[85] Gerwick, W.H., Proteau, P.J., Nagle, D.G., Wise, M.L., Jiang, Z.D., Bernart, M.W. and Hamberg, M. (1993) Biologically Active Oxylipins from Seaweeds. Hydrobiologia, 260-261, 653-665.
[86] Imbs, A.B., Vologodskaya, A.V., Nevshupova, N.V., Khotimchenko, S.V. and Titlyanov, E.A. (2001) Response of Prostaglandin Content in the Red Alga Gracilaria verrucosa to Season and Solar Irradiance. Phytochemistry, 58, 1067-1072.
[87] Jacobs, R.S., Bober, M.A., Pinto, I., Williams, A.B., Jacobson, P.B. and de Carvalho, M.S. (1993) Pharmacological Studies of Novel Marine Metabolites. In Attaway, D.H. and Zaborsky, O.R., Eds., Advances in Marine Biotechnology: Pharmaceutical and Bioactive Natural Products, 1, Plenum Press, New York, 77-99.
[88] Blumenthal, P.D. (1988) Prospect Comparison of Dilapan and Laminaria for Pretreatment of the Cervix in Second Trimester Induction of Abortion. Obstetrics Gynecology, 72, 243-246.
[89] El-Refaey, H. and Templeton, A. (1995) Pregnancy: Induction of Abortion in the Second Trimester by a Combination of Misoprostol and Mifepristone: A Randomized Comparison between Two Misoprostol Regimens. Human Reproduction, 10, 475-478.
[90] Lee, C.N., Cheng, W.F., Lai, H.L., Shyu, M.K., Chen, T.M., Wu, R.T., Shih, J.C. and Hsieh, F.J. (1998) Comparison between Intravenous Prostaglandin E2 and Extraamniotic Prostaglandin F2α Instillation for Termination in Second-Trimester Pregnancy. Journal of Maternal-Fetal Investigation, 8, 134-138.
[91] Church, F.C., Meade, J.B., Treanor, R.E. and Whinna, H.C. (1989) Antithrombin Activity of Fucoidan. The Interaction of Fucoidan with Heparin Cofactor II, Antithrombin III, and Thrombin. Journal of Biological Chemistry, 264, 3618-3623.
[92] Colliec, S., Fischer, A.M., Tapon-Bretaudiere, J., Boisson, C., Durand, P. and Jozefonvicz, J. (1991) Anticoagulant Properties of a Fucoidan Fraction. Thrombosis Research, 64, 143-154.
[93] Matou, S., Helley, D., Chabut, D., Bros, A. and Fischer, A.M. (2002) Effect of Fucoidan on Fibroblast Growth Factor-2-Induced Angiogenesis in Vitro. Thrombosis Research, 106, 213-221.
[94] Grauffel, V., Kloareg, B., Mabeau, S., Durand, P. and Jozefonvicz, J. (1989) New Natural Polysaccharides with Potent Antithrombic Activity: Fucans from Brown Algae. Biomaterials, 10, 363-368.
[95] Nishino, T. and Nagumo, T. (1991) The Sulfate-Content Dependence of the Anticoagulant Activity of a Fucan Sulfate from the Brown Seaweed Ecklonia kurome. Carbohydrate Research, 214, 193-197.
[96] Nishino, T. and Nagumo, T. (1992) Anticoagulant and Antithrombin Activities of Oversulfated Fucans. Carbohydrate Research, 229, 355-362.
[97] Trento, F., Cattaneo, F., Pescador, R., Porta, R. and Ferro, L. (2001) Antithrombin Activity of an Algal Polysaccharide. Thrombosis Research, 102, 457-465.
[98] Nishide, E., Anzai, H. and Uchida, N. (1993) Effects of Alginates on the Ingestion and Excretion of Cholesterol in the Rat. Journal of Applied Phycology, 5, 207-211.
[99] Dumelod, E.D., Ramirez, R.P.B., Tiangson, C.L.P., Barrios, E.B. and Panlasigui, L.N. (1999) Carbohydrate Availability of Arroz Caldo with Lambda-Carrageenan. International Journal of Food Sciences and Nutrition, 50, 283-289.
[100] Ohta, T., Sasaki, S., Oohori, T., Yoshikawa, S. and Kurihara, H. (2002) α-Glucosidase Inhibitory Activity of a 70% Methanol Extract from Ezoishige (Pelvetia babingtonii de Toni) and Its Effect on the Elevation of Blood Glucose Level in Rats. Bioscience, Biotechnology, and Biochemistry, 66, 1552-1554.
[101] Ara, J., Sultana, V., Qasim, R. and Ahmad, V.U. (2002) Hypolipidaemic Activity of Seaweed from Karachi Coast. Phytotherapy Research, 16, 479-483.
[102] Flower, R.J. and Blackwell, G.J. (1976) The Importance of Phospholipase A2 in Prostaglandin Biosynthesis. Biochemical Pharmacology, 25, 285-291.
[103] Mayer, A.M.S., Paul, V.J., Fenical, W., Norris, J.M., de Carvalho, M.S. and Jacobs, R.S. (1993) Phospholipase A2 Inhibitors from Marine Algae. Hydrobiologia, 260-261, 521-529.
[104] Angulo, Y. and Lomonte, B. (2003) Inhibitory Effect of Fucoidan on the Activities of Crotaline Snake Venom Myotoxic Phospholipases A2. Biochemical Pharmacology, 66, 1993-2000.
[105] Bitou, N., Ninomiya, M., Tsujita, T. and Okuda, H. (1999) Screening of Lipase Inhibitors from Marine Algae. Lipids, 34, 441-445.
[106] Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D’Incecco, A., Piccoli, A., Totani, L., et al. (2007) A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology, 17, 541-552.
[107] Alam, S., Katiyar, D., Goel, R., Vats, A. and Mittal, A. (2013) Role of Herbals in Cancer Management.
[108] Dürig, J., Bruhn, T., Zurborn, K.H., Gutensohn, K., Bruhn, H.D. and Béress, L. (1997) Anticoagulant Fucoidan Fractions from Fucus vesiculosus Induce Platelet Activation in Vitro. Thrombosis Research, 85, 479-491.
[109] Mandal, P., Mateu, C.G., Chattopadhyay, K., Pujol, C.A., Damonte, E.B. and Ray, B. (2007) Structural Features and Antiviral Activity of Sulphated Fucans from the Brown Seaweed Cystoseira Indica. Antiviral Chemistry and Chemotherapy-Institutional Subscription, 18, 153-162.
[110] Ioannou, E., Vagias, C. and Roussis, V. (2010) Bioactive Metabolites from Marine Algae. Bio Environment, 26, 68-72.
[111] Margo Branch (2000) Coastal and Marine Life: Protoctista: Algae, South Africa.
[112] Trinchero, J., Ponce, N., Córdoba, O.L., Flores, M.L., Pampuro, S., Stortz, C.A., Salomón, H. and Turk, G. (2009) Antiretroviral Activity of Fucoidans Extracted from the Brown Seaweed Adenocystis utricularis. Phytotherapy Research, 23, 707-712.
[113] Ermakova, S., Sokolova, R., Kim, S.M., Um, B.H., Isakov, V. and Zvyagintseva, T. (2011) Fucoidans from Brown Seaweeds Sargassum hornery, Eclonia cava, Costaria costata: Structural Characteristics and Anticancer Activity. Applied Biochemistry and Biotechnology, 164, 841-850.
[114] Yang, C., Chung, D., Shin, I.S., Lee, H., Kim, J., Lee, Y. and You, S.G. (2008) Effects of Molecular Weight and Hydrolysis Conditions on Anticancer Activity of Fucoidans from Sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43, 433-437.
[115] Griffiths, C.L. and Branch, G.M. (1997) The Exploitation of Coastal Invertebrates and Seaweeds in South Africa: Historical Trends, Ecological Impacts and Implications for Management. Transactions of the Royal Society of South Africa, 52, 121-148.
[116] Talarico, L.B., Zibetti, R.G.M., Faria, P.C.S., Scolaro, L.A., Duarte, M.E.R., Noseda, M.D., Pujol, C.A. and Damonte, E.B. (2004) Anti-Herpes Simplex Virus Activity of Sulfated Galactans from the Red Seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. International Journal of Biological Macromolecules, 34, 63-71.
[117] Mazumder, S., Ghosal, P.K., Pujol, C.A., Carlucci, M.J., Damonte, E.B. and Ray, B. (2002) Isolation, Chemical Investigation and Antiviral Activity of Polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). International Journal of Biological Macromolecules, 31, 87-95.
[118] Lins, K.O.A.L., Bezerra, D.P., Alves, A.P.N.N., Alencar, N.M.N., Lima, M.W., Torres, V.M., Farias, W.R.L., Pessoa, C., de Moraes, M.O. and Costa-Lotufo, L.V. (2008) Antitumor Properties of a Sulfated Polysaccharide from the Red Seaweed Champia feldmannii (Diaz-Pifferer). Journal of Applied Toxicology, 29, 20-26.
[119] Cassolato, J.E., Noseda, M.D., Pujol, C.A., Pellizzari, F.M., Damonte, E.B. and Duarte, M.E. (2008) Chemical Structure and Antiviral Activity of the Sulfated Heterorhamnan Isolated from the Green Seaweed Gayralia oxysperma. Carbohydrate Research, 343, 3085-3095.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.