Bayes Shrinkage Minimax Estimation in Inverse Gaussian Distribution
Gyan Prakash
DOI: 10.4236/am.2011.27111   PDF    HTML     14,232 Downloads   37,339 Views   Citations

Abstract

In present paper, the properties of the Bayes Shrinkage estimator is studied for the measure of dispersion of an inverse Gaussian model under the Minimax estimation criteria.

Share and Cite:

Prakash, G. (2011) Bayes Shrinkage Minimax Estimation in Inverse Gaussian Distribution. Applied Mathematics, 2, 830-835. doi: 10.4236/am.2011.27111.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. L. Folks and R. S. Chhikara, “The Inverse Gaussian Distribution and Its Statistical Application—A Review,” Journal of the Royal Statistical Society, Vol. 40, No. 3, 1978, pp. 263-289.
[2] J. L. Folks and R. S. Chhikara, “The Inverse Gaussian Distribution,” Marcel Dekker, New York, 1989.
[3] V. Seshadri, “The Inverse Gaussian Distribution,” Statistical Theory and Applications, Springer–Verlag, New York, 1998.
[4] M. C. K. Tweedie, “Statistical Properties of Inverse Gaussian Distribution–I,” The Annals of Mathematical Statistics, Vol. 28, No. 2, 1957, pp. 362-377. doi:10.1214/aoms/1177706964
[5] M. C. K. Tweedie, “Statistical Properties of Inverse Gaussian Distribution–II,” The Annals of Mathematical Statistics, Vol. 28, No. 2, 1957, pp. 696-705. doi:10.1214/aoms/1177706881
[6] J. J. Schuster, “On the Inverse Gaussian Distribution,” Journal of American Statistical Association, Vol. 63, No. 324, 1968, pp. 1514-1516. doi:10.2307/2285899
[7] A. Parsian and S. N. U. A. Kirmani, “Estimation under LINEX Loss Function,” In: A. Ullah, A. T. K. Wan, A. Chaturvedi and M. Dekker, Eds., Handbook of Applied Econometrics and Statistical Inference, CRC Press, Boca Raton, 2002, pp. 53-76.
[8] H. R. Varian, “A Bayesian Approach to Real Estate Assessment,” In: S. E. Feinberge and A. Zellner, Eds., Studies in Bayesian Econometrics and Statistics, Amsterdam North Holland, 1975, pp. 195-208.
[9] D. C. Singh, G. Prakash and P. Singh, “Shrinkage Testimators for the Shape Parameter of Pareto Distribution Using the Linex Loss Function,” Communication in Statistics: Theory and Methods, Vol. 36, No. 4, 2007, pp. 741-753. doi:10.1080/03610920601033694
[10] J. R. Thompson, “Some Shrinkage Techniques for Estimating the Mean,” Journal of the American Statistical Association, Vol. 63, No. 321, 1968, pp. 113-122. doi:10.2307/2283832
[11] B. N. Pandey and H. J. Malik, “Some Improved Estimators for a Measure of Dispersion of an Inverse Gaussian Distribution,” Communications in Statistics: Theory and Methods, Vol. 17, 1988, pp. 3935-3949. doi:10.1080/03610928808829847
[12] G. Prakash and D. C. Singh, “Shrinkage Testimators for the Inverse Dispersion of the Inverse Gaussian Distribution under the Linex Loss Function,” Austrian Journal of Statistics, Vol. 35, No. 4, 2006, pp. 463-470.
[13] T. Palmer, “Certain Non-Classical Inference Procedures Applied to the Inverse Gaussian Distribution,” Ph.D. Dissertation, Oklahoma State University, Stillwater, 1973.
[14] A. K. Banerjee and G. K.Bhattacharya, “Bayesian Results for the Inverse Gaussian Distribution with an Application,” Technometrics, Vol. 21, No. 2, 1979, pp. 247-251. doi:10.2307/1268523
[15] J. I. Hodge and E. L. Lehmann, “Some Problems in Minimax Estimation,” Annals of Mathematical Statistics, Vol. 21, No. 2, 1950, pp. 182-197. doi:10.1214/aoms/1177729838

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.