A Non-Monotone Trust Region Method with Non-Monotone Wolfe-Type Line Search Strategy for Unconstrained Optimization ()
1. Introduction
Consider the following unconstrained optimization problem:
(1)
where
is a twice continuously differentiable function. Throughout this paper, we use the following notation:
・
is the Euclidean norm.
・
and
are the gradient and Hessian matrix of f evaluated at x, respectively.
・
,
,
and
is a symmetric matrix which is either
or an approximation of
.
For solving (1), trust region methods usually compute
by solving the quadratic sub-problem:
(2)
where
is a trust region radius. Some criteria are used to determine whether a trial step
is accepted. If not, the sub-problem (2) may be computed several times at one iterate until an acceptable step is found. There is no doubt that the repetitive process will increase the cost of solving the problem.
To improve the performance of the algorithm, Nocedal and Yuan [1] put forward an algorithm which combine trust region algorithm and line search method for the first time in 1998, then Gertz [2] proposed a new trust region algorithm that use Wolfe line search at each iteration to obtain a new iteration point regardless of whether
is accepted. Both of them improved the computational efficiency by fully using the advantages of two kinds of algorithm.
Algorithms mentioned above are monotonic algorithm. In 1982, Chamberlain et al. in [3] proposed the watchdog technique for constrained optimization to overcome the Maratos effect. Motivated by this idea, Grippo et al. first introduced a non-monotone line search technique for Newton’s method in [4] . In 1993, Deng et al. [5] proposed a non-monotone trust region algorithm in which they combined non-monotone term and trust region method for the first time. Due to the high efficiency of non-monotone techniques, many authors are interested in working on the non-monotone techniques for unconstrained optimization problem [6] - [15] . Especially, some researchers have combined non-monotone trust region method with non-monotone Armijo-type line search method and good numerical results have been achieved [16] [17] . Besides, Zhang and Hager [18] proposed a non-monotone Wolfe-type condition. Inspired by [16] - [18] , we present a non-monotone trust region algorithm with non-monotone Wolfe-type line search strategy. To be specific, the algorithm first solve sub-problem (2) to compute the trial step
, if the trial step is accepted, set
. Otherwise, the algorithm performs the non-monotone Wolfe-type line search strategy to find an iterative point instead of resolving the sub-prob- lem.
2. Non-Monotone Term and Wolfe-Type Line Search Condition
The general non-monotone form is as follows:
(3)
where
,
and
is an integer constant. Actually, the most common non-monotone ratio is defined as follows:
.
Some researchers showed that utilizing non-monotone techniques may improve both the possibility of finding the global optimum and the rate of convergence [4] [18] . However, although the non-monotone technique has many advantages, it contains some drawbacks [11] [17] [18] . To overcome those disadvantages, Ahookhosh et al. in [11] proposed a new non-monotone technique to replace (3). They define
(4)
where
,
and
. At the same time, they have the new non-monotone ratio:
(5)
In 2004, Zhang and Hager [18] presented a modified non-monotone Wolfe-type condition. In order to keep the consistency of non-monotone term and simplify the form of Wolfe-type condition, we define the new modified non-monotone Wolfe-type condition as follows:
(6)
(7)
The rest of this paper is organized as follows. In Section 3, we introduce the algorithm of non-monotone trust region method with line search strategy. In Section 4, we analyze the new method and prove the global convergence. Some conclusions are given in Section 5.
3. New Algorithm
In this paper, we consider the following assumptions that will be used to analyze the convergence properties of the below algorithm:
(H1) The level set
, where
is a closed, bounded set.
(H2) The matrix
is a uniformly bounded matrix, i.e. there exists a constant
such that
for all k.
(H3)
is a Lipschitz continuous function, i.e. there exists a constant
such that
.
(H4)
has the upper bound
.
The new algorithm can be described as follows:
Algorithm 0
Step 1 An initial point
and a symmetric positive definite matrix
are given. The constants
,
,
,
,
,
,
and
are also given. Compute
and set
.
Step 2 Compute
. If
then stop, else go to Step 3.
Step 3 Similar to [1] , solve (2) inaccurately to determine
, satisfying
(8)
(9)
Step 4 Compute
,
,
and
. If
, go to Step 5. Otherwise, find the step-length
satisfying (6) and (7), then set
and update
, go to step 6.
Step 5 Set
, and
.
Step 6 Update the symmetric matrix
by a quasi-Newton formula, set
, go to step 2.
4. Convergence Analysis
For the convenience of expression, we Let
and
. Obviously,
is an infinite subset of the set
.
We need the following lemmas in order to prove the convergence of the new algorithm.
Lemma 1 Assume that Algorithm 0 generates an infinite sequence
, (H2), (H3) and (H4) hold, and there is a
such that
. Then for all
, there exists a constant
such that
.
Proof. From (7) and (H3), we have
. (10)
Thus, we can conclude that
. (11)
This inequality, together with (H2), (H4) and (9), lead us to have
. (12)
Let
, we complete the proof.
Lemma 2 (See Lemma 2.1 and Corollary 3.1 in [17] ) Suppose that the sequence
is generated by Algorithm 0. Then, we have
,
is a decreasing sequence and
(13)
Lemma 3 Suppose that (H1) holds, if sequence
does not converge to a stationary point, i.e. there exists a constant
such that
. Then
(14)
where ![]()
Proof. We consider two cases:
Case 1.
. The proof is similar to Lemma 3.3 in [17] , we can obtain that
.
Case 2.
. From (6), (9) and (12), we have
![]()
where
.
Let
, we can conclude
. (15)
Considering Lemma 2 and (15), we get (14).
Lemma 4 Suppose that all conditions of Lemmma 1 and Lemma 3 hold. Then for all sufficiently large k, we have
. (16)
Proof. The proof is similar to Lemma 3.6 and 3.7 in [16] , we omit it for convenience.
Lemma 5 Suppose that (H2) and (H3) hold, if there exists a constant
such that
, then for a sufficiently large integer
, we have
.
Proof. Assume that for
, (16) holds. Using the fact and (15), we obtain
.
Then, the monotonicity of
imply that
![]()
Thus, for
we have
![]()
Using Lemma 2, we get
.
This inequality and the fact that
is convergent (see [4] ) show
.
Therefore,
. Then we have
.
Theorem 6 Suppose that (H1)-(H4) hold, then sequence
generated by Algorithm 0 satisfies
. (17)
Proof. Assume that (17) does not hold, then there exists a constant
such that
. From (H2) and the definition of
, we have
.
Obviously, this contradicts Lemma 5. The proof is completed.
5. Conclusion
In this paper, we introduce the algorithm of non-monotone trust region method with non-monotone Wolfe-type line search strategy for unconstrained optimization problems based on (5), (6) and (7). When compared with (3), it is obviously that we fully employ the current objective function value
and we can derive the better convergence results by choosing an adaptive
. Besides, with the help of line search strategy, new algorithm can reduce the number of solving sub-problems. We analyzed the properties of the algorithm and proved the global convergence theory under some mild conditions.
Acknowledgements
This work is supported by the National Natural Science Foundation of China (61473111) and the Natural Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100).
NOTES
*Corresponding authors.