An Extended Genetic Linkage Map for Watermelon Based on a Testcross and a BC2F2 Population
Amnon Levi, Patrick Wechter, Laura Massey, Louisa Carter, Donald Hopkins
DOI: 10.4236/ajps.2011.22012   PDF    HTML     7,087 Downloads   14,031 Views   Citations


There is limited genetic mapping data useful for breeding programs of watermelon. Introgression lines should be a use-ful tool for genetic studies and genetic enhancement of watermelon cultivars. In this study, we used an advanced re-combinant population (BC2F2) to identify and map chromosomal segments of the wild watermelon Citrullus lanatus var. citroides that were incorporated in the genome of the watermelon cultivar Crimson Sweet (Citrullus lanatus var. lana-tus). An advanced recombinant population (BC2F2) was constructed using a United States Plant Introduction (PI) 494817 (C. lanatus var. citroides) (known to have moderate resistance to bacterial fruit blotch) as a donor parent, and the elite watermelon cultivar Crimson Sweet (C. lanatus var. lanatus) as the recurrent parent. The genetic linkage map consists of 272 markers, including 89 sequence-related amplified polymorphism (SRAP), 72 targeted region amplifica-tion polymorphism (TRAP), and 111 high frequency oligonucleotide-targeting active gene (HFO-TAG) markers. The 272 markers were assembled into 51 linkage groups, covering a total genetic distance of 2162 cM, with an average genetic distance of 7.9 cM between markers. Also, we expended the genetic linkage map for watermelon derived from a testcross population {Griffin 14113 [C. lanatus var. citroide (L.H. Bailey) Mansf.] x watermelon cultivar New Hamp-shire Midget (C. lanatus var. lanatus)} x PI 386015 [C. colocynthis (L.) Schrad.]. The genetic linkage map based on the test cross population consists of 558 markers that cover a genetic distance of 2760.8 cM. This linkage map consists of 41 linkage group, including 10 large linkage groups (ranging from102-240 cM), nine intermediate size linkage groups (ranging from 62-93 cM), and 22 small linkage groups (ranging from 2-56 cM). Comparative mapping between these two linkage maps identified high consensus in 25 HFO-TAG markers and one TRAP marker that represent 8 linkage groups in the BC2F2 population and 9 linkage groups in the testcross population. These results indicate that HFO-TAG markers should be useful in comparative mapping. The extended genetic maps and the genetic population in this study should be useful in breeding programs using marker assisted selection and should serve as a platform for further de-velopment of introgression lines for watermelon.

Share and Cite:

A. Levi, P. Wechter, L. Massey, L. Carter and D. Hopkins, "An Extended Genetic Linkage Map for Watermelon Based on a Testcross and a BC2F2 Population," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 93-110. doi: 10.4236/ajps.2011.22012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Bates and R. W. Robinson, “Cucumbers Melon and Watermelons,” In: J. Smart and N. W. Simmonds, Eds., Evolution of Crop Plants, 2nd Edition, Longman, London, 1995, pp. 89-96.
[2] R. L. Jarret, L. C. Merrick, T. Holms, J. Evans and M. K. Aradhya, “Simple Sequence Repeats in Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai],” Genome, Vol. 40, 1997, pp. 433-441. doi:10.1139/g97-058
[3] C. Mujaju, J. Sehic, G. Werlemark, L. Garkava-Gustavsson, M. Faith and H. Nybom, “Genetic Diversity in Watermelon (Citrullus lanatus) Landraces from Zimbabwe Revealed by RAPD and SSR Markers,” Hereditas, Vol. 147, No. 4, 2010, pp. 142-153. doi:10.1111/j.1601-5223.2010.02165.x
[4] A. Levi, C. E. Thomas, T. C. Wehner and X. Zhang, “Low Genetic Diversity Indicates the Need to Broaden the Genetic Base of Cultivated Watermelon,” HortScience, Vol. 36, 2001, pp. 1096-1101.
[5] A. Levi, C. E. Thomas, A. P. Keinath and T. C. Wehner, “Genetic Diversity among Watermelon (Citrullus lanatus and Citrullus colocynthis) Accessions,” Genetic Resources and Crop Evolution, Vol. 48, No. 6, 2001, pp. 559-566.doi:10.1023/A:1013888418442
[6] G. Gusmini, R. Song and T. C. Wehner, “New Sources of Resistance to Gummy Stem Blight in Watermelon,” Crop Science, Vol. 45, No. 2, 2005, pp. 582-588. doi:10.2135/cropsci2005.0582
[7] R. D. Martyn and D. Netzer, “Resistance to Races 0, 1 and 2 of Fusarium Wilt of Watermelon in Citrullus sp. PI-296341-FR,” HortScience, Vol. 26, 1991, pp. 429-432.
[8] J. A. Thies and A. Levi, “Characterization of Watermelon (Citrullus lanatus var. citroides) Germplasm for Resistance to Root-Knot Nematodes,” Journal of Nematology, Vol. 42, 2007, pp. 1530-1533.
[9] A. Levi, C. E. Thomas, X. Zhang, T. Joobeur, R. A. Dean, T. C. Wehner and B. R. Carle, “A Genetic Linkage Map for Watermelon Based on Randomly Amplified Polymorphic DNA (RAPD) Markers,” Journal of American Society for Horticultural Science, Vol. 126, 2001, pp. 730-737.
[10] L. K. Hawkins, F. Dane, T. L. Kubisiak, B. B. Rhodes and R. L. Jarret, “Linkage Mapping in a Watermelon Population Segregating for Fusarium Wilt Resistance,” Journal of American Society for Horticultural Science, Vol. 126, 2001, pp. 344-350.
[11] E. S. Buckler IV, T. L. Phelps-Durr, C. S. K. Buckler, R. K. Dawe, J. F. Doebley and T. P. Holtsford, “Meiotic Drive of Chromosomal Knobs Reshaped the Maize Genome,” Genetics, Vol.153, No. 1, 1999, pp. 415-426.
[12] A. Levi, C. E. Thomas, T. Joobeur, X. Zhang and A. Davis, “A Genetic Linkage Map for Watermelon Derived from a Testcross Population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus) × C. colocynthis,” Theoretical and Applied Genetics, Vol. 105, 2002, pp. 555-563.
[13] A. Levi, C. E. Thomas, T. Trebitsh, A. Salman, J. King, J. Karalius, M. Newman, O. U. K Reddy, Y. Xu and Z. Zhang, “An Extended Linkage Map for Watermelon Based on SRAP, AFLP, SSR, ISSR, and RAPD Markers,” Journal of American Society for Horticultural Science, Vol. 131, 2006, pp. 393-402.
[14] J. Peng, A. B. Korol, T. Fahima, M. S. R?der, Y. I. Ronin, Y. C. Li and E. Nevo, “Molecular Genetic Maps in Wild Emmer Wheat, Triticum dicoccoides: Genome-Wide Coverage, Massive Negative Interference, and Putative Quasi-Linkage,” Genome Research, Vol. 10, 2000, pp. 1509-1531. doi:10.1101/gr.150300
[15] K. R. Harris, W. P. Wechter and A. Levi, “Isolation, Sequence Analysis, and Linkage Mapping of NBS-LRR Disease Resistance Gene Homologs in Watermelon,” Journal of American Society for Horticultural Science, Vol. 134, 2009a, pp. 649-657.
[16] K. R. Harris, K. Ling, W. P. Wechter and A. Levi, “Identification and Utility of Markers Linked to the Zucchini Yellow Mosaic Virus Resistance Gene in Watermelon,” Journal of American Society for Horticultural Science, Vol. 134, 2009b, pp. 529-534.
[17] K. Ling, K. R. Harris, J. D. Meyer, A. Levi, N. Guner, T. C. Wehner, A. Bendahmane and M. J. Havey, “Non- Synonymous Single Nucleotide Polymorphisms in the Watermelon eIF4E Gene are Closely Associated with Resistance to Zucchini Yellow Mosaic Virus,” Theoretical and Applied Genetics, Vol. 120, No. 1, 2009, pp. 191-200. doi:10.1007/s00122-009-1169-0
[18] D. L. Hopkins, “Bacterial Fruit Blotch of Watermelon: A New Disease in the Eastern USA,” In: C.E. Thomas, Ed., Proceedings Cucurbitaceae 1989: Evaluation and Enhancement of Cucurbit germplasm, U. S. Vegetable Laboratory, Charleston, 1989, pp. 74-75.
[19] G. C. Somodi, J. B. Jones, D. L. Hopkins, R. E. Stall, T. A. Kucharek, N. C. Hodge and J. C. Watterson, “Occurrence of a Bacterial Watermelon Fruit Blotch in Florida,” Plant Disease, Vol. 75, 1991, pp. 1053-1056. doi:10.1094/PD-75-1053
[20] D. L. Hopkins, “Copper-Containing Fungicides Reduce the Spread of Bacterial Fruit Blotch of Watermelon in the Greenhouse,” Phytopathology, Vol. 85, 1995, p. 510.
[21] R. R. Walcott, A. Fessehaie and A. C. Castro, “Differences in Pathogenicity between Two Genetically Distinct Groups of Acidovorax avenae subsp. citrulli on Cucurbit Hosts,” Journal Phytopathology, Vol. 152, No. 5, 2004, pp. 277-285. doi:10.1111/j.1439-0434.2004.00841.x
[22] D. L. Hopkins and C. M. Thompson, “Evaluation of Citrullus sp. Germplasm for Resistance to Acidovorax avenae subsp. Citrulli,” Plant Disease, Vol. 86, No. 1, 2002, pp. 61-64. doi:10.1094/PDIS.2002.86.1.61
[23] D. L. Hopkins and A. Levi, “Progress in the Development of Crimson Sweet-Type Watermelon Breeding Lines with Resistance to Acidovorax Avenae Subsp. Citrulli,” Acta Horticulturae, In: M. Pitrat, Ed., Proceedings of the IX Eucarpia Meetings on Genetics and Breeding of Cucurbitaceae, INRA, 2008, pp.157-162.
[24] L. Inostroza1, A. del Pozo, I. Matus and P. Hayes, “Drought Tolerance in Recombinant Chromosome Substitution Lines (RCSLs) Derived from the Cross Hordeum vulgare subsp. spontaneum (Caesarea 26-24) × Hordeum vulgare subsp. vulgare CV. Harrington,” Agricultura Tecnican (Chile), Vol. 67, 2007, pp. 253-261.
[25] Y. Eshed and D. Zamir, “A Genomic Library of Lycopersicon pennellii in Lycopersicon esculentum—A Tool for Fine Mapping of Genes,” Euphytica, Vol. 79, No. 3, 1994, pp. 175-179. doi:10.1007/BF00022516
[26] Y. Eshed and D. Zamir, “An Introgression Line Population of Lycopersicon pennellii in the Cultivated Tomato Enables the Identification and Fine Mapping of Yield-Associated QTL,” Genetics, Vol. 141, 1995, pp. 1147-1162.
[27] S. Tanksley, S. Grandillo, T. Fulton, D. Zamir, T. Eshed, V. Petiard, J. Lopez and B. T. Beck, “Advanced Backcross QTL Analysis in a Cross between an Elite Processing Line of Tomato and its Wild Relative L. pimpinellifolium,” Theoretical and Applied Genetics, Vol. 92, No. 2, 1996, pp. 213-224. doi:10.1007/BF00223378
[28] A. J. Monforte and S. D. Tanksley, “Development of a Set of Nearisogenic and Backcross Recombinant Inbred Lines Containing Most of the Lycopersicon hirsutum Genome in a L. esculentum Genetic Background: A Tool for Gene Mapping and Gene Discovery,” Genome, Vol. 43, 2000, pp. 803-813.
[29] M. J. W. Jeuken and P. Lindhout, “The Development of Lettuce Backcross Inbred Lines (BILs) for Exploitation of the Lactuca saligna (Wild Lettuce) Germplasm,” Theoretical Applied Genetics, Vol. 109, No. 2, 2004, pp. 394-401.doi:10.1007/s00122-004-1643-7
[30] S. Liu, R. Zhou, Y. Dong, P. Li and J. Jia, “Development, Utilization of Introgression Lines Using a Synthetic Wheat as Donor,” Theoretical and Applied Genetics, Vol. 112, No. 7, 2006, pp. 1360-1373. doi:10.1007/s00122-006-0238-x
[31] V. C. Concibido, B. La Vallee, P. Mclaird, N. Pineda, J. Meyer, L. Hummel, J. Yang, K. Wu and X. Delannay, “Introgression of a Quantitative Trait Locus for Yield from Glycine soja into Commercial Soybean Cultivars,” Theoretical Applied Genetics, Vol. 106, 2003, pp. 575-582.
[32] L. D. Ramsay, D. E. Jennings, E. J. R. Bohuon, A. E. Arthur, D. J. Lydiate, M. J. Kearsey and D. F. Marshall, “The Construction of a Substitution Library of Recombinant Backcross Lines in Brassica oleracea for the Precision Mapping of Quantitative Trait Loci,” Genome, Vol. 39, No. 3, 1996, pp. 558-567. doi:10.1139/g96-071
[33] A. Levi, W. P. Wechter, K. R. Harris-Shultz, A. R. Davis and Z. Fie, “High-Frequency Oligonucleotides in Watermelon Expressed Sequenced Tag-Unigenes are Useful in Producing Polymorphic Polymerase Chain Reaction Markers among Watermelon Genotypes,” Journal of American Society for Horticultural Science, Vol. 135, 2010, pp. 369-378.
[34] J. Hu and B. A. Vick, “Target Region Amplification Polymorphism: A Novel Marker Technique for Plant Genotyping,” Plant Molecular Biology Reporter, Vol. 21, No. 3, 2003, pp. 289-294. doi:10.1007/BF02772804
[35] A. Levi and C. E. Thomas, “An Improved Procedure for Isolation of High Quality DNA from Watermelon and Melon Leaves,” Cucurbit Genet Coop Report, Vol. 22, 1999, pp. 41-42.
[36] J. W. Van Ooijen and R. E. Voorrips, “JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps,” Plant Research International, Wageningen, 2001.
[37] Y. Z. Xing, W. J. Tang, W. Y. Xue, C. G. Xu and Q. Zhang, “Fine Mapping of a Major Quantitative Trait Loci, qSSP7, Controlling the Number of Spikelets per Panicle as a Single Mendelian Factor in Rice,” Theoretical and Applied Genetics, Vol. 116, No. 6, 2008, pp. 789-796. doi:10.1007/s00122-008-0711-9
[38] I. Schmalenbach, N. Korber and K. Pillen, “Selecting a Set of Wild Barley Introgression Lines and Verification of QTL Effects for Resistance to Powdery Mildew and Leaf Rust,” Theoretical and Applied Genetics, Vol. 117, No. 7, 2008, pp. 1093-1106. doi:10.1007/s00122-008-0847-7
[39] T. Hashizume, I. Shimamoto and M. Hirai, “Construction of a Linkage Map and QTL Analysis of Horticultural Traits for Watermelon Citrullus lanatus (Thunb.) Matsum & Nakai] Using RAPD, RFLP and ISSR Markers,” Theoretical Applied Genetics, Vol. 106, No. 5, 2003, pp. 779-785.
[40] Y. Xu, S. Guo, H. Zhang, Y. Ren, H. Zhao, G. Lv, G. Gong, Z. Fei, Q. Kou, X. Zou, H. Wang and W. Hou, “International Watermelon Genomics Initiative (IWGI): Advance and Orientation,” In: J. Thies, A. Levi and C. Kousik, Eds., Cucurbitacaea 2010 Proceeding, Charleston, 2010.
[41] R. Zhang, Y. Xu, K. Yi, H. Zhang, L. Liu, G. Gong and A. Levi, “A Genetic Linkage Map for Watermelon Derived from Recombinant Inbred Lines,” Journal of American Society for Horticultural Science, Vol. 129, 2004, pp. 237-243.
[42] A. Levi, A. Davis, A. Hernandez, P. Wechter, J. Thimmapuram, Y. Tadmor, N. Katzir, T. Trebitsh and S. King, “Genes Expressed During the Development and Ripening of Watermelon Fruit,” Plant Cell Report, Vol. 25, No. 11, 2006, pp. 1233-1245.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.