Molecular distributed sensors using dark soliton array trapping tools
Sorayut Glomglome, Somsak Mitatha, Preecha P. Yupapin
DOI: 10.4236/jbise.2011.46059   PDF    HTML     3,390 Downloads   6,354 Views   Citations


We present the novel system of molecular distributed sensors using dark soliton pulse array, whereas the multi dark soliton sources can be generated and the molecular distributed sensors presented via an optical multiplexer (MUX). Initially, the dark soliton array with different center wavelengths can be generated, then the transmission molecules/atoms can be secured by using the dark soliton behaviors, whereas the dark soliton valley can be configured as the molecule/atom trapping potential well, which can be used to trap molecule/atom. In this case, the transported molecules/atoms in the router can be used to form the molecular distributed sensors, whereas the induced changes in the molecular distributed sensors can be formed and measured via the drop port of each output multiplexer.

Share and Cite:

Glomglome, S. , Mitatha, S. and Yupapin, P. (2011) Molecular distributed sensors using dark soliton array trapping tools. Journal of Biomedical Science and Engineering, 4, 472-478. doi: 10.4236/jbise.2011.46059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Threepak, T., Luangvilay, X., Mitatha, S. and Yupapin, P.P. (2010) Novel quantum-molecular transporter and networking via a wavelength router. Microwave and Optical Technology Letters, 52, 2104-2107. doi:10.1002/mop.25204
[2] Kulsirirat, K., Techithdeera, W. and Yupapin, P.P. (2010) Dynamic potential well generation and control using double resonators incorporating in an add/drop filter. Modern Physics Letters B, In Press.
[3] Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E. and Chu, S. (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288- 290. doi:10.1364/OL.11.000288
[4] Eriksen, R.L., Daria, V.R. and Gl¨uckstad, J. (2002) Fully dynamic multiple-beam optical tweezers. Optics Express, 10, 597-602.
[5] Rodrigo, P.J., Daria, V.R. and Gl¨uckstad, J. (2004) Real-time interactive optical micromanipulation of a mixture of high-and low-index particles. Optics Express, 12, 1417-1425. doi:10.1364/OPEX.12.001417
[6] Liesener, J., Reicherter, M., Haist, T. and Tiziani, H.J. (2000) Multi-functional optical tweezers using computer generated holograms. Optics Communications, 185, 77- 82. doi:10.1016/S0030-4018(00)00990-1
[7] Curtis, J.E., Koss, B.A. and Grier, D.G. (2002) Dynamic holographic optical tweezers. Optics Communications, 207, 169-175.
[8] [Hossack, W.J., Theofanidou, E., Crain, J., Heggarty, K. and Birch, M. (2003) High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay. Optics Express, 11, 2053-2059. doi:10.1364/OE.11.002053
[9] Boyer, V., Godun, R.M., Smirne, G., Cassettari, D., Chandrashekar, C.M., Deb, A.B., Laczik, Z.J. and Foot, C.J. (2006) Dynamic manipulation of bose-einstein con-densates with a spatial light modulator. Physical Review A, 73, 4. doi:10.1103/PhysRevA.73.031402
[10] Carpentier, A.V., Belmonte-Beitia, J., Michinel, H. and Perez-Garcia, V.M. (2008) Laser tweezers for atomic so-litons. Journal of Modern Optics, 55, 2819-2829. doi:10.1080/09500340802209763
[11] [Milner, V., Hanssen, J.L., Campbell, W.C. and Raizen, M.G. (2001) Optical billiards for atoms. Physical Review Letters, 86, 1514-1516. doi:10.1103/PhysRevLett.86.1514
[12] Korda, P.T., Taylor, M.B. and Grier, D.G. (2002) Kinet-ically locked-in colloidal transport in an array of optical tweezers. Physical Review Letters, 89, 128-301.
[13] Mithata, S., Pornsuwancharoen, N. and Yupapin, P.P. (2009) A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide. IEEE Photonics Technology Letters, 21, 932-934. doi:10.1109/LPT.2009.2020803
[14] Kokubun, Y., Hatakeyama, Y., Ogata, M., Suzuki, S. and Zaizen, N. (2005) Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius. IEEE Journal of Selected Topics in Quantum Electronics, 11, 4-10. doi:10.1109/JSTQE.2004.841720
[15] Yupapin, P.P. and Suwancharoen, W. (2007) Chaotic signal generation and cancellation using a micro ring re-sonator incorporating an optical add/drop multiplexer. Optics Communications, 280, 343-350. doi:10.1016/j.optcom.2007.08.018
[16] Yupapin, P.P., Saeung, P. and Li, C. (2007) Characteris-tics of complementary ring-resonator add/drop filters modeling by using graphical approach. Optics Commu-nications, 272, 81-86. doi:10.1016/j.optcom.2006.10.077

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.