Initial Stages in the Formation of Galls Induced by Geoica utricularia in Pistacia terebinthus Leaflets: Origin of the Two Vascular Bundles which Characterize the Wall of the Galls
Álvarez Nogal
DOI: 10.4236/ajps.2011.22019   PDF    HTML     5,209 Downloads   9,569 Views   Citations

Abstract

Only a few species of aphids induce galls. Among these, Paracletus cimiciformis, Forda marginata, Forda formicaria, Geoica utricularia and Baizongia pistaciae induce galls on Pistacia terebinthus leaflets. Prior to present study the author examined microscopically P. terebinthus leaflets. He also studied the microscopic morphology of galls induced by the five species mentioned above. A clear microscopic difference between these galls is that in the wall of galls induced by the genera Paracletus and Forda a single vascular bundle is seen. The interpretation is that these galls are laminae of the modified leaflets. However, in the walls of the galls induced by the genera Geoica and Baizongia, two vascular bundles are observed. In the present paper a study of the early stages of development of galls produced by G. utricularia is described. The study was designed to explain the origin of the two vascular bundles present in the walls of these galls. The findings indicate that the aphid induces a massive development of the two vascular bundles present in the midvein of the leaflets of P. terebinthus: the main vascular bundle and the small supernumerary vascular bundle. Both these extremely developed vascular bundles occupy the walls of the galls induced by G. utricularia.

Share and Cite:

Nogal, Á. (2011) Initial Stages in the Formation of Galls Induced by Geoica utricularia in Pistacia terebinthus Leaflets: Origin of the Two Vascular Bundles which Characterize the Wall of the Galls. American Journal of Plant Sciences, 2, 175-179. doi: 10.4236/ajps.2011.22019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. J. Spiller, F. M. Kimmins and M. Llewellyn, “Fine structure of aphid stylet pathways and its use in host plant resistance studies”, Entomologia Experimentalis et Applicata, Vol. 38, 1985, 293-295.
[2] W. F. Tjallingh and T. Hogen-Esch, “Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals”, Physiological Entomology, Vol. 18, 1993, 317- 328.
[3] M. Inbar, “The evolution of gall traits in the Fordinae”, in: K. Ozaki, J. Yukawa, T. Ohgushi and P. E. Price (Eds.), Ecology and Evolution of Galling Arthropods and Their Associates, Springer-Verlag, Tokyo, 2006, 265-273.
[4] D. Wool, R. Aloni, O. Ben-Zvi and M. Wollberg, “A galling aphid furnishes its home with a built-in pipeline to the host food supply”, Entomologia Experimentalis et Applicata, Vol. 91, 1999, 183-186.
[5] M. Inbar, M. Wink and D. Wool, “The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia”, Molecular Phylogenetics and Evolution, Vol. 32, 2004, 504-511.
[6] J. Meyer, “Plant Galls and Gall Inducers”, Gebrüder Borntraeger, Berlin, Germany, 1987.
[7] M. S. Mani, “Ecology of Plant Galls”, Dr. Junk Publisher, The Hague, 1964.
[8] M. Arduin and J. E. Kraus, “Anatomia e ontogenia de galhas foliares de Piptadenia gonoacantha (Fabales, Mimosaceae)”, Boletim de Botanica da Universidade de S?o Paulo, Vol. 14, 1995, 109-130.
[9] R. álvarez, A. Encina and N. Pérez Hidalgo, “Histological aspects of three Pistacia terebinthus galls induced by three different aphids: Paracletus cimiciformis, Forda marginata and Forda formicaria”, Plant Science, Vol. 176, 2009, 303-314.
[10] R. álvarez, “Microscopic study of the walls of galls induced by Geoica utricularia and Baizongia pistaciae in Pistacia terebinthus: a contribution to the phylogeny of Fordini”, Arthropod-Plant Interactions, 2011, submitted for publication.
[11] R. álvarez, A. Encina and N. Pérez Hidalgo, “Pistacia terebinthus L. leaflets: an anatomical study”, Plant Systematic Evolution, Vol. 272, 2008, 107-118.
[12] B. Ortiz-Rivas, D. Martínez-Torres and N. Pérez-Hidalgo, “Molecular phylogeny of Iberian Fordini (Aphididae: Eriosomatinae): implications for the taxonomy of genera Forda and Paracletus”, Systematic Entomology, Vol. 34, 2009, 293-306.
[13] M. Martínez-Millán and S. R. S. Cevallos-Ferriz, “Arquitectura foliar de Anacardiaceae. Leaf architecture of Anacardiaceae”. Revista Mexicana de Biodiversidad, Vol. 76, 2005, 137-190.
[14] D. Wool and N. Bar-El, “Population ecology of the galling aphid Forda formicaria Von Heyden in Israel: abundance, demography, and gall structure”, Israel Journal of Zoology, Vol. 41, 1995, 175-192.
[15] G. Remaudière, M. Inbar, J. Menier and A. Sumida, “Un nouveau Geoica gallicole sur Pistacia atlantica en Jordanie [Hemiptera, Aphididae, Eriosomatinae, Fordini”, Revue fran?aise d'Entomologie, Vol. 26, No 1, 2004, 37-42.
[16] M. G. Al-Saghir, D. M.. Porter and E. T. Nilsen, “Leaf Anatomy of Pistacia Species (Anacardiaceae)”, Journal of Biological Sciences, Vol. 6, No. 2, 2006, 242-244.
[17] J. Meyer and J. Maresquelle, “Anatomie des Galles”, Ggebrüder Borntrager, Berlin, 1983.
[18] A. T. Simmons, G. M. Gurr, D. McGrath, H. I. Nicol and P. M. Martin, “Trichomes of Lycopersicon spp. and their effect on Myzus persicae (Sulzer) (Hemiptera: Aphididae)”, Australian Journal of Entomology, Vol. 42, 2003, 373-378.
[19] M. Arduin, G. W. Fernandes and J. E. Kraus, “Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves”, Brazilian Journal of Biology, Vol. 65, No. 4, 2005, 559-571.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.