Nonlinear Change in Refractive Index and Transmission Coefficient of ZnSe:Fe2+ at Long-Pulse 2.94-μm Excitation

Abstract

An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan probing is reported. As well, a theoretical model based on the generalized Avizonis-Grotbeck equations is developed and applied for straightforward fitting of the open- and closed-aperture Z-scans, obtained for ZnSe:Fe2+ with different Fe2+ centers concentrations. The modeling results reveal that the contributions in the absorption and refractive index nonlinearities of ZnSe:Fe2+ are “common” resonant-absorption saturation (the minor part) and pulse-induced heating of the samples (the major part), which are strongly dependent on Fe2+ concentrations. Large values of the index change (>~10-3) and partial resonant-absorption bleaching (limited by ~50%), both produced via the thermal effect mainly, are the features of the ZnSe:Fe2+ samples inherent to this type of excitation.

Share and Cite:

Kir’yanov, A. , Il’ichev, N. , Gulyamova, E. , Nasibov, A. and Shapkin, P. (2015) Nonlinear Change in Refractive Index and Transmission Coefficient of ZnSe:Fe2+ at Long-Pulse 2.94-μm Excitation. Optics and Photonics Journal, 5, 15-27. doi: 10.4236/opj.2015.51003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Adams, J.J., Bibeau, C., Page, R.H., Krol, D.M., Furu, L.H. and Payne, S.A. (1999) 4.0-4.5-μm Lasing of Fe:ZnSe below 180 K, a New Mid-Infrared Laser Material. Optics Letters, 24, 1720-1722.
http://dx.doi.org/10.1364/OL.24.001720
[2] Kernal, J., Fedorov, V.V., Gallian, A., Mirov, S.B. and Badikov, D.V. (2005) 3.9-4.8 μm Gain-Switched Lasing of Fe:ZnSe at Room Temperature. Optics Express, 13, 10608-10615.
http://dx.doi.org/10.1364/OPEX.13.010608
[3] Kernal, J., Fedorov, V.V., Gallian, A., Mirov, S.B. and Badikov, D.V. (2006) 3.9-4.8 μm Gain-Switched Lasing of Fe:ZnSe at Room Temperature. In: Hoffman, H.J. and Shori, R.K., Eds., Solid State Lasers XV: Technology and Devices, Proceedings of SPIE, Vol. 6100, 61000F.
[4] Akimov, V.I., Voronov, A.A., Kozlovsky, V.I., Korostelin, Yu.V., Landman, A.I., Podmar’kov, Yu.P. and Frolov, M.P. (2006) Efficient Lasing in Fe2+:ZnSe Crystal at Room Temperature. Quantum Electronics, 36, 299-301.
http://dx.doi.org/10.1070/QE2006v036n04ABEH013139
[5] Fedorov, V.V., Mirov, S.B., Gallian, A., Badikov, D.V., Frolov, M.P., Korostelin, Y.V., Kozlovsky, V.I., Landman, A.I., Podmar’kov, Y.P., Akimov, V.A. and Voronov, A.A. (2006) 3.77-5.05 μm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Law and Room Temperatures. IEEE Journal of Quantum Electronics, 42, 907-917.
http://dx.doi.org/10.1109/JQE.2006.880119
[6] Il’ichev, N.N., Danilov, V.P., Kalinushkin, V.P., Studenikin, M.I., Shapkin, P.V. and Nasibov, A.S. (2008) Superluminescent Room-Temperature Fe2+:ZnSe IR Radiation Source. Quantum Electronics, 38, 95-96.
http://dx.doi.org/10.1070/QE2008v038n02ABEH013786
[7] Doroshenko, M.E., Basiev, T.T., Koranda, P., Jelinkova, H., Nemec, M., Cech, M., Sulc, J., Komar, V.K., Gerasimenko, A.S., Badikov, V.V. and Badikov, D.V. (2009) Bulk Fe:ZnSe Laser Gain-Switched by the Q-Switched Er:YAG Laser. In: Clarkson, A., Hodgson, N. and Shori, R.K., Eds., Solid State Lasers XVIII: Technology and Devices, Proceedings of SPIE, Vol. 7193, 71931K.
[8] Mirov, S., Fedorov, V., Moskalev, I., Martyshkin, D. and Kim, C. (2010) Progress in Cr and Fe Doped Mid-IR Laser Materials. Laser and Photonics Review, 4, 21-41.
http://dx.doi.org/10.1002/lpor.200810076
[9] Doroshenko, M.E., Jelinkova, H., Koranda, P., Sulc, J., Basiev, T.T., Osiko, V.V., Komar, V.K., Gerasimenko, A.S., Puzikov, V.M., Badikov, V.V. and Badikov, D.V. (2010) Tunable Mid-Infrared Laser Properties of Cr2+:ZnMgSe and Fe2+:ZnSe Crystals. Laser Physics Letters, 7, 38-45.
http://dx.doi.org/10.1002/lapl.200910111
[10] Myoung, N.S., Martyshkin, D., Fedorov, V.V., Martinez, A. and Mirov, S.B. (2011) Energy Scaling of Room Temperature Fe2+:ZnSe Gain-Switched 4.3 μm Laser. In: Clarkson, A., Hodgson, N. and Shori, R.K., Eds., Solid State Lasers XX: Technology and Devices, Proceedings of SPIE, Vol. 7912, 79121C.
[11] Doroshenko, M.E., Jelinkova, H., Basiev, T.T., Jelinek, M., Koranda, P., Nemec, M., Komar, V.K., Gerasimenko, A.S., Badikov, V.V., Badikov, D.V., Vyhlidal, D. and Stoklasa, J. (2011) Fe:ZnSe Laser—Comparison of Active Materials Grown by Two Different Methods. In: Clarkson, A., Hodgson, N. and Shori, R.K., Eds., Solid State Lasers XX: Technology and Devices, Proceedings of SPIE, Vol. 7912, 79122D.
[12] DeLoach, L.D., Page, R.H., Wilke, G.D., Payne, S.A. and Krupke, W.F. (1996) Transition Metal-Doped Zinc Chalcogenides: Spectroscopy and Laser Demonstration of a New Class of Gain Media. IEEE Journal of Quantum Electronics, 32, 885-895.
http://dx.doi.org/10.1109/3.502365
[13] Page, R.H., Schaffers, K.I., DeLoach, L.D., Wilke, G.D., Patel, E.D., Tassano, J.B., Payne, S.A., Krupke, W.F., Chen, K.T. and Burger, A. (1997) Cr2+-Doped Zinc Chalcogenides as Efficient, Widely Tunable Mid-Infrared Lasers. IEEE Journal of Quantum Electronics, 33, 609-619.
http://dx.doi.org/10.1109/3.563390
[14] Brik, M.G. (2007) Comparative First-Principles Analysis of Crystal Field Splitting, Charge Transfer Energies and Covalent Effects for Cr2+ and Fe2+ Ions in II-VI and III-V Compounds. Journal of Materials Science: Materials in Electronics, 18, 221-224.
http://dx.doi.org/10.1007/s10854-007-9199-3
[15] Kalyuk, L.L., Laiho, R., Lashkul, A.V., Lahderanta, E., Nedeoglo, D.D., Nedeoglo, N.D., Radevici, I.V., Siminel, A.V., Sirkeli, V.P. and Sushkevich, K.D. (2010) Magnetic and Luminescent Properties of Iron-Doped ZnSe Crystals. Physica B, 405, 4330-4334.
http://dx.doi.org/10.1016/j.physb.2010.07.036
[16] Kisel, V.E., Shcherbitskii, V.G., Kuleshov, N.V., Postnova, L.I. and Levchenko, V.I. (2005) Saturable Absorbers for Passive Q-Switching of Erbium Lasers Emitting in the Region of 3 μm. Journal of Applied Spectroscopy, 72, 818-823.
http://dx.doi.org/10.1007/s10812-006-0009-0
[17] Voronov, A.A., Kozlovsky, V.I., Korostelin, Yu.V., Landman, A.I., Podmar’kov, Yu.P., Polushkin, V.G. and Frolov, M.P. (2006) Passive Fe2+:ZnSe Single-Crystal Q Switch for 3-μm Lasers. Quantum Electronics, 36, 1-2.
http://dx.doi.org/10.1070/QE2006v036n01ABEH013097
[18] Gallian, A., Martinez, A., Marine, P., Fedorov, V., Mirov, S., Badikov, V., Boutoussov, D. and Andriasyan, M. (2007) Fe:ZnSe Passive Q-Switching of 2.8-μm Er:Cr:YSGG Laser Cavity. In: Hoffman, H.J., Shori, R.K. and Hodgson, N., Eds., Solid State Lasers XVI: Technology and Devices, Proceedings of SPIE, Vol. 6451, 64510L.
[19] Cankaya, H., Demirbas, U., Erdamar, A.K. and Sennaroglu, A. (2008) Absorption Saturation Analysis of Cr2+:ZnSe and Fe2+:ZnSe. Journal of the Optical Society of America B, 25, 794-800.
http://dx.doi.org/10.1364/JOSAB.25.000794
[20] Myoung, N.S., Fedorov, V.V. and Mirov, S.B. (2010) Opticaly Dense Fe:ZnSe Crystals for Energy Scaled Gain Switched Lasing. In: Clarkson, A., Hodgson, N. and Shori, R.K., Eds., Solid State Lasers XIX: Technology and Devices, Proceedings of SPIE, Vol. 7578, 75781H.
[21] Myoung, N.S., Fedorov, V.V., Mirov, S.B. and Wenger, L.E. (2012) Temperature and Concentration Quenching of Mid-IR Photoluminescence in Iron Doped ZnSe and ZnS Laser Crystals. Journal of Luminescence, 132, 600-606.
http://dx.doi.org/10.1016/j.jlumin.2011.10.009
[22] Il’ichev, N.N., Shapkin, P.V., Kulevsky, L.A., Gulyamova, E.S. and Nasibov, A.S. (2007) Nonlinear Transmittance of ZnSe:Fe2+ at a Wavelength of 2.92 μm. Laser Physics, 17, 130-133.
http://dx.doi.org/10.1134/S1054660X07020132
[23] Sheik-Bahae, M., Said, A.A., Wei, T., Hagan, D.J. and Van Stryland, E.W. (1990) Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE Journal of Quantum Electronics, 26, 760-769.
http://dx.doi.org/10.1109/3.53394
[24] Demirbas, U., Sennaroglu, A. and Somer, M. (2006) Synthesis and Characterization of Diffusion-Doped Cr2+:ZnSe and Fe2+:ZnSe. Optical Materials, 28, 231-240.
http://dx.doi.org/10.1016/j.optmat.2004.10.022
[25] Il’ichev, N.N., Shapkin, P.V., Gulyamova, E.S., Kulevsky, L.A. and Nasibov, A.S. (2010) Diffusion Coefficient of Fe2+ in Single-Crystal ZnSe. Inorganic Materials, 46, 112-115.
http://dx.doi.org/10.1134/S0020168510020044
[26] Avizonis, P.V. and Grotbeck, R.L. (1966) Experimental and Theoretical Ruby Laser Amplifier Dynamics. Journal of Applied Physics, 37, 687-693.
http://dx.doi.org/10.1063/1.1708238
[27] Kir’yanov, A.V. and Il’ichev, N.N. (2005) Nonlinear Resonant Change in Refractive Index of a Doped Saturable Medium at Short-Pulse Excitation. Laser Physics Letters, 2, 485-488.
http://dx.doi.org/10.1002/lapl.200510029
[28] Il’ichev, N.N., Kir’yanov, A.V., Shapkin, V.P., Nasibov, S.A. and Mosaleva, S.Ye. (2005) Nonlinear Change in Refractive Index of Co2+:ZnSe at Short-Pulse Single-Beam 1.54-μm Z-Scan Probing. Applied Physics B, 81, 83-91.
http://dx.doi.org/10.1007/s00340-005-1860-z
[29] Muller, O., Lutz, Y., Teissier, A., Moeglin, J.P. and Keller, V. (2010) Optical Limiting Behavior of Carbon Nanotubes Exposed to Infrared Laser Irradiations Studied by the Z-Scan Technique. Applied Optics, 49, 1097-1103.
http://dx.doi.org/10.1364/AO.49.001097
[30] Xie, R., Li, L., Li, Y., Liu, L., Xiao, D. and Zhu, J. (2011) Fe:ZnSe Semiconductor Nanocrystals: Synthesis, Surface Capping, and Optical Properties. Journal of Alloys and Compounds, 509, 3314-3318.
http://dx.doi.org/10.1016/j.jallcom.2010.12.046
[31] Surma, M., Godlewski, M. and Surkova, T.P. (1994) Iron and Chromium Impurities as Centers of Nonradiative Recombination. Physical Review B, 50, 8319-8324.
http://dx.doi.org/10.1103/PhysRevB.50.8319
[32] Surkova, T.P., Kaczor, P., Zakrewski, A.J., Swiatek, K., Ivanov, V.Yu., Godlewski, M., Polimeni, A., Eaves, L. and Giriat, W. (2000) Optical Properties of ZnSe, ZnCdSe and ZnSSe Alloys Doped with Iron. Journal of Crystal Growth, 214-215, 576-580.
http://dx.doi.org/10.1016/S0022-0248(00)00156-1
[33] Il’ichev, N.N., Pashinin, P.P., Gulyamova, E.S., Bufetova, G.A., Shapkin, P.V. and Nasibov, A.S. (2014) Linear and Nonlinear Transmission of Fe2+-Doped ZnSe Crystals at a Wavelength of 2940 nm in the Temperature Range 20-220°C. Quantum Electronics, 44, 213-216.
http://dx.doi.org/10.1070/QE2014v044n03ABEH015323
[34] Mirov, S.B., Fedorov, V.V., Moskalev, I.S. and Martyshkin, D.V. (2007) Recent Progress in Transition-Metal-Doped II-VI Mid-IR Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 810-822.
http://dx.doi.org/10.1109/JSTQE.2007.896634
[35] Mirov, S.B., Fedorov, V.V., Martyshkin, D.V., Moskalev, I.S., Mirov, M.S. and Gapontsev, V.P. (2011) Progress in Mid-IR Cr2+ and Fe2+ Doped II-VI Materials and Lasers (Invited). Optical Materials Express, 1, 898-910.
http://dx.doi.org/10.1364/OME.1.000898
[36] Velikanov, S.D., Danilov, V.P., Zakharov, N.G., Il’ichev, N.N., Kazantsev, S.Yu., Kalinushkin, V.P., Kononov, I.G., Nasibov, A.S., Studenikin, M.I., Pashinin, P.P., Firsov, K.N., Shapkin, P.V. and Shchurov, V.V. (2014) Fe2+:ZnSe Laser Pumped by a Nonchain Electric-Discharge HF Laser at Room Temperature. Quantum Electronics, 44, 141-144.
http://dx.doi.org/10.1070/QE2014v044n02ABEH015341

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.