The Evaluation of Polyethylene/Clay Composite from Solid State NMR


Polymeric nanocomposites based on polyethylene (PE) and Brazilian natural montmorillonite clay (MN) were obtained by melt processing, using a twin-screw extruder. The main objective of this work is focusing on the characterization of composites materials by solid-state nuclear magnetic resonance (NMR). The solid-state NMR measurements were used to observe both polymer matrix (through carbon-13 and hydrogen nuclei) and the clay (silicon-29 and aluminum-27). The polymer matrix analyses were carried out applying solid state techniques, such as: cross-polarization magic angle spinning (CPMAS), variable contact time (VCT) and by the proton spin-lattice relaxation time in the rotating frame parameter (TH), detected from the resolved carbon-13 decay of the VCT experiment and through the determination of spin-lattice relaxation time, T1H (using low field NMR). The clay was analyzed by 29Si and 27Al, employing MAS NMR technique. From those techniques we can have principally response on clay dispersion in the polyethylene matrix, as well as the interactions between both components in the nanostructured material. The T1H response was an important result which showed, that the materials formed, presented different molecular domains (according to the domain size that varied from 25 to 50 nm, measured by relaxation), considering the clay dispersion mode in terms of intercalation and/or exfoliation in the polymer matrix.

Share and Cite:

R. Nogueira, M. Tavares, R. San Gil and A. Ferreira, "The Evaluation of Polyethylene/Clay Composite from Solid State NMR," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 453-457. doi: 10.4236/msa.2011.25060.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Takayanagi, T. Ogata, M. Morikawa and M. Kai, “Polymer Composites of Rigid and Flexible Molecules: System of Wholly Aromatic and Aliphatic Polyamides,” Journal of Macromolecular Science: Physics, B1, Vol. 17, No. 4, 1980, pp 591-615.
[2] T. Fukai, J. C. Yang, T. Kyu, S. Z. D. Cheng, S. K. Lee, S. L.C. Hsu and F. W. Harris, “Miscibility Studies of Polyimide/Poly(Ether Imide) Molecular Composites,” Polymer, Vol. 33, No. 17, 1992, pp. 3621-3626. doi:10.1016/0032-3861(92)90646-E
[3] X. Y. Wang, W. J. Liu, X. B. Wang, Z. C. Zhang and H. R. Liu, “Preparation of Poly (Methacrylic acid)/Polystyrene Composite Particles and Morphology Control,” Materials Letters, Vol. 61, 2007, pp. 4478-4481.
[4] N. Singh and P. K. Khanna, “Micromorphology, Photophysical and Electrical Properties of Pristine and Ferric Chloride Doped Poly(3-Hexylthiophene) Films,” Materials Chemistry and Physics, Vol. 104, 2007, pp. 367-372. doi:10.1016/j.matchemphys.2007.01.024
[5] K. Ishizu, K. Tsubaki, A. Mori and S. Uchida, “Architecture of Nanostructured Polymers,” Progress in Polymer Science, Vol. 28, No. 1, January 2003, pp. 27-54. doi:10.1016/S0079-6700(02)00025-4
[6] R. F. Nogueira, M. I. B Tavares and R. A. San Gil, “Carbon-13 Solid State NMR Study of Polypropylene/Clay Nanocomposite,” Journal of Metastable and Crystallinity, Vol. 22, 2004, pp. 71-76.
[7] R. F. Nogueira, M. I. B Tavares, R. A. San Gil and N. M. Silva, “Solid State NMR Investigation of Polypropylene/ Brazilian Clay Blending Process,” Polymer Testing, Vol. 24, No. 3, 2005, pp. 358-362. doi:10.1016/j.polymertesting.2004.10.005
[8] M. I. B. Tavares, R. F. Nogueira, R. A. S. San Gil and N. M. Silva, “NMR Evaluation of Composite and Nanocomposite Employing Polypropylene and Clay,” Annals of Magnetic Resonance, Vol. 3, No. 1, 2004, pp. 60-66.
[9] T. M. F. F Diniz and M. I. B. Tavares, “A High Resolution Solid State NMR Investigation of Molecular Mobility of Poly(Methyl Methacrylate)/ Poly(Vinylpyrrolidone)/Poly(Ethylene Oxide) Ternary Blends,” Journal of Applied Polymer Science, Vol. 100, 2006, pp. 1492-1495. doi:10.1002/app.23228
[10] A. L. S. Lima, A. C. Pinto, R. A. S. San Gil and M. I. B. Tavares, “Mesophase Formation Investigation in Pitches by NMR Relaxometry,” Journal of Brazilian Chemical Society, Vol. 18, 2007, pp. 255-258. doi:10.1590/S0103-50532007000200002
[11] M. Preto, M. I. B. Tavares and E. P. Silva, “Low-Field NMR Study of Nylon 6/Silica Composites,” Polymer Testing, Vol. 26, No. 4, June 2007, pp. 501-504. doi:10.1016/j.polymertesting.2007.01.009
[12] M. I. B. Tavares, O. Ferreira, M. S. M. Preto, E. Miguez, I. L. Soares and E. P. Silva, “Low-field NMR Study of Nylon 6/Silica Composites,” International Journal of Polymeric Materials, Vol. 56, No. 4, 2007, pp. 1113-1118. doi:10.1080/00914030701283063
[13] M. I. B. Tavares, R. F. Nogueira, R. A. S. San Gil, M. Preto, E. O. Silva, M. B. R. Silva and E. Miguez, “Polypropylene–Clay Nanocomposite Structure Probed by H NMR Relaxometry,” Polymer Testing, Vol. 26, No. 8, 2007, pp. 1100-1102. doi:10.1016/j.polymertesting.2007.07.012
[14] T. C. Rodrigues, M. I. B. Tavares, M. Preto and I. L. Soares; A. C. F. Moreira, “Evaluation of Polyethylene/ Organoclay Nanocomposites by Low-field Nuclear Relaxation International Journal of Polymeric Materials,” International Polymeric Journal Materials, Vol. 57, No. 12, 2008, pp. 1119-1123. doi:10.1080/00914030802428716
[15] Z. Weiping, H. Xiuwen, L. Xiumei and B. Xinhe, “The Stability of Nanosized HZSM-5 Zeolite: A High-Resolution Solid-State NMR Study,” Microporous and Mesoporous Materials, Vol. 50, No. 1 2001, pp.13-23. doi:10.1021/ma980798v
[16] H. Kazuhiko, E. Takeshi, U. Nobuaki, O. Sentaro and N. Shinichi, “Effect of Vanadium on USY Zeolite Destruction in the Presence of Sodium Ions and Steam—Studies by Solid-State NMR,” Applied Catalysis A: General, Vol. 249, No. 2, 2003, pp. 213-228. doi:10.1016/S0926-860X(03)00289-8
[17] C.A. Fyfe, “Solid State for Chemistry, Guelph, Ontario, Canada, N1H6Z9,” C. F. C. Press, ISBN 0-88955-038-7
[18] C. A. Fyfe, H. Strobl, G. T. Kokotailo, C. T. Pasztor, G. E. Barlow and S. Bradley, “Correlations between Lattice Structures of Zeolites and Their 29Si MAS n.m.r. Spectra: Zeolites KZ-2, ZSM-12, and Beta,” Zeolites, Vol. 8, No. 2, 1988, pp. 132-136. doi:10.1016/S0144-2449(88)80079-4

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.