Axisymmmetric Empty Space: Light Propagation, Orbits and Dark Matter

Abstract

This study presents an axisymmetric solution of the Einstein equations for empty space. The geometry is studied by determining its Petrov classification and killing vectors. Light propagation, orbital motion and asymptotic and Newtonian limits are also studied. Additionally, cosmological applications of the geometry are also outlined as an alternative model for the inflationary universe and as a substitute for dark matter and quintessence.

Share and Cite:

Giardino, S. (2014) Axisymmmetric Empty Space: Light Propagation, Orbits and Dark Matter. Journal of Modern Physics, 5, 1402-1411. doi: 10.4236/jmp.2014.515141.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lunin, O. and Maldacena, J.M. (2005) Journal of High Energy Physics, 0505, 033. hep-th/0502086
[2] Giardino, S. (2013) ISRN High Energy Physics, 2013, 517858. arXiv:1305.4881 [hep-th]
[3] Giardino, S. (2014) Modern Physics Letters, A29, 1450018. arXiv:1305.4881[hep-th]
http://dx.doi.org/10.1142/S0217732314500187
[4] Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E. (2008) Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge.
[5] Sharif, M. and Fatima, T. (2005) Il Nuovo Cimento B, B120, 533-540. gr-qc/0507069
[6] Backdahl, T. and Herberthson, M. (2005) Classical and Quantum Gravity, 22, 1607-1621. gr-qc/0502012
[7] Hernandez-Pastora, J.L. and Herrera, L. (2011) Classical and Quantum Gravity, 28, 225026. arXiv:1110.2002[gr-qc]
[8] Momeni, D. and Gholizade, H. (2009) International Journal of Modern Physics, D18, 1719-1729.
arXiv:0903.0067[gr-qc]
http://dx.doi.org/10.1142/S0218271809015266
[9] Reina, C. (1976) General Relativity and Gravitation, 7, 817-838.
http://dx.doi.org/10.1007/BF00778761
[10] Lemos, J.P.S. (1995) Physics Letters, B353, 46-51. gr-qc/9404041
http://dx.doi.org/10.1016/0370-2693(95)00533-Q
[11] Lemos, J.P.S. and Zanchin, V.T. (1996) Physical Review D, 54, 3840-3853.
http://dx.doi.org/10.1103/PhysRevD.54.3840
[12] Baykal, A., Ciftci, D.K. and Delice, O. (2010) Journal of Mathematical Physics, 51, Article ID: 072505.
http://dx.doi.org/10.1063/1.3459939
[13] Ahmedov, H. and Aliev, A.N. (2010) Physical Review D, 82, Article ID: 024043.
http://dx.doi.org/10.1103/PhysRevD.82.024043
[14] Sami, M. (2014) Why Is Universe So Dark?
[15] Sami, M. and Myrzakulov, R. (2013) Late Time Cosmic Acceleration: ABCD of Dark Energy and Modified Theories of Gravity.
[16] Morisetti, S., Reina, C. and Treves, A. (1980) General Relativity and Gravitation, 12, 8.
[17] Kinnersley, W. (1969) Journal of Mathematical Physics, 10, 1195-1203.
http://dx.doi.org/10.1063/1.1664958
[18] Edgar, S.B., Gomez-Lobo, A.G.P. and Martin-Garcia, J.M. (2009) General Relativity and Quantum Cosmology, 26, Article ID: 105022.
[19] Ferrando, J.J. and Sáez, J.A. (2014) General Relativity and Gravitation, 46, 1073.
[20] Stephani, H. (1990) General Relativity. Cambridge University Press, Cambridge.
[21] Ciftja, O., Babineaux, A. and Hafeez, N. (2009) European Journal of Physics, 30, 623-627.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.