[1]
|
Becerril, R., Guzman, F.S., Rendon-Romero, A. and Valdez-Alvarodo, S. (2008) Solving the Time Dependent Schrodinger Equation Using Finite Difference Method. Revista Mexicana de Fisica E, 54, 120-132.
|
[2]
|
Jiménez, S., Iorente, M.I.L., Manch, M.A., Peréz-García, M.V. and Vázquez, L. (2003) A Numerical Scheme for the Simulation of Blow-Up of the Nonlinear Schrodinger Equation. Applied Mathematics and Computation, 134, 271-291. http://dx.doi.org/10.1016/S0096-3003(01)00282-X
|
[3]
|
Ramos, J.I. and Villatoro, F.R. (1994) The Nonlinear Schrodinger Equation in the Finite Line. Mathematical Computer Modeling, 20, 31-59. http://dx.doi.org/10.1016/0895-7177(94)90030-2
|
[4]
|
Zisowsky, A. and Ehrhardt, M. (2008) Discrete Artificial Boundary Condition for Non-Linear Schrodinger Equations. Mathematical and Computer Modeling, 47, 1264-1283. http://dx.doi.org/10.1016/j.mcm.2007.07.007
|
[5]
|
Ismail, A.I.N., Karim, F., Roy, G.D. and Meah, M.A. (2007) Numerical Modeling of Tsunami via Method of Lines. World Academy of Science, Engineering and Technology, 1, 341-349.
|
[6]
|
Hoz, F. and Vadillo, F. (2008) An Exponential Time Differencing Method for Nonlinear Schrodinger Equation. Computer Physics Communication, 179, 449-456. http://dx.doi.org/10.1016/j.cpc.2008.04.013
|
[7]
|
Thron, C. and Watts, J. (2013) A Signal-Processing Interpretation of Quantum Mechanics. The African Review of Physics, 8, 263-270.
|
[8]
|
Schiesser, W.E. (1991) Numerical Method of Lines: Integration of Partial Differential Equation. Academic Press Limited, California.
|
[9]
|
Schiesser, W.E. and Griffith, G.W. (2009) A Compendium of Partial Differential Equation Model: Method of Lines Analysis with Matlab. Cambridge Universal Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511576270
|
[10]
|
Sa’adu, L., Hashim, M.A., Dasuki, K.A. and Sanugi, B. (2012) A Method of Lines Approach in the Numerical Solution of 1-Dimensional Schrodinger Equation. Applied Physics Research, 4, 88-93. http://dx.doi.org/10.5539/apr.v4n3p88
|
[11]
|
Samrout, Y.M. (2009) New Second and Fourth Order Accurate Numerical Schemes for the Cubic Schrodinger Equation. International Journal of Computer Mathematics, 8, 1625-1651.
|
[12]
|
Proakis, J. (2000) Digital Communications. 4th Edition, McGraw-Hill Publishing, New York.
|
[13]
|
Fatokun, J.O. and Akpan, I.P. (2013) L-Stable Implicit Trapezoidal-Like Integrators for the Solution of Parabolic Partial Differential Equations on Manifolds. African Journal of Mathematics and Computer Science Research, 6, 183-190.
|