Microstructure-Property Relationship in Self-Crosslinked Non-Derivative Acetic Acid Lignin-Containing Polyurethane Membranes

Abstract

With the assistance of different solvents, self-crosslinked acetic acid lignin-containing polyurethane (LPU) membranes were synthesized. Compared with tetrahydrofuran and dioxane, N, N-dimethylacetamide with stronger polarity together with higher boiling point was demonstrated to be beneficial for preparing LPU particles of smaller size and enhanced binding force. It was also found that lignin domain can interpenetrate into polyurethane domain well with 43.3% lignin addition, resulting in enhanced phase mixing and better performance. In addition, relative homogeneous and smooth LPU membrane can be obtained with 2% TMP addition, while stress crack took place when TMP content was greater than 3%.

Share and Cite:

Liu, B. , Li, Z. and Wang, H. (2014) Microstructure-Property Relationship in Self-Crosslinked Non-Derivative Acetic Acid Lignin-Containing Polyurethane Membranes. Green and Sustainable Chemistry, 4, 162-174. doi: 10.4236/gsc.2014.43021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Desai, S., Thakore, I.M., Sarawade, B.D. and Devi, S. (2000) Structure-Property Relationship in Polyurethane Elastomers Containing Starch as a Crosslinker. Polymer Engineering Science, 40, 1200-1210.
http://dx.doi.org/10.1002/pen.11247
[2] Evtiouguina, M., Barros-Timmons, A., Cruz-Pinto, J.J., Pascoal Neto, C., Belgacem, M.N. and Gandini, A. (2002) Oxypropylation of Cork and the Use of the Ensuing Polyols in Polyurethane Formulations. Biomacromolecules, 3, 57-62. http://dx.doi.org/10.1021/bm010100c
[3] Zhang, L.N. and Huang, J. (2001) Effects of Nitrolignin on Mechanical Properties of Polyurethane-Nitrolignin Films. Journal of Applied Polymer Science, 80, 1213-1219. http://dx.doi.org/10.1002/app.1206
[4] Lora, J.H. and Glasser, W.G. (2002) Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment, 10, 39-48.
http://dx.doi.org/10.1023/A:1021070006895
[5] Zhao, X., Wu, R. and Liu, D. (2011) Production of Pulp, Ethanol and Lignin from Sugarcane Bagasse by Alkali-Peracetic Acid Delignification. Biomass Bioenergy, 35, 2874-2882.
http://dx.doi.org/10.1016/j.biombioe.2011.03.033
[6] Ni, Y. and Hu, Q. (1995) Alcell Lignin Solubility in Ethanol-Water Mixtures. Journal of Applied Polymer Science, 57, 1441-1446. http://dx.doi.org/10.1002/app.1995.070571203
[7] Ni, Y.H. and Van Heiningen, A.R.P. (1996) Lignin Removal from Alcell? Pulp by Washing with Ethanol and Water. Tappi Journal, 79, 239-243.
[8] Pan, X. and Sano, Y. (2005) Fractionation of Wheat Straw by Atmospheric Acetic Acid Process. Bioresource Technology, 96, 1256-1263. http://dx.doi.org/10.1016/j.biortech.2004.10.018
[9] Jahan, M.S., Chowdhury, D.A.N. and Islam, M.K. (2007) Atmospheric Formic Acid Pulping and TCF Bleaching of Dhaincha (Sesbania aculeate), Kash (Saccharum spontaneum) and Banana Stem (Musa cavendish). Industrial Crops and Products, 26, 324-331. http://dx.doi.org/10.1016/j.indcrop.2007.03.012
[10] Cordeiro, N., Belgacem, M.N., Torres, I.C. and Moura, J.C.V.P. (2004) Chemical Composition and Pulping of Banana Pseudo-Stems. Industrial Crops and Products, 19, 147-154.
http://dx.doi.org/10.1016/j.indcrop.2003.09.001
[11] Ligero, P., Villaverde, J.J., de Vega, A. and Bao, M. (2008) Delignification of Eucalyptus globulus Saplings in Two Organosolv Systems (Formic and Acetic Acid): Preliminary Analysis of Dissolved Lignins. Industrial Crops and Products, 27, 110-117. http://dx.doi.org/10.1016/j.indcrop.2007.08.008
[12] Ni, P. and Thring, R.W. (2003) Synthesis of Polyurethanes from Solvolysis Lignin Using a Polymerization Catalyst: Mechanical and Thermal Properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 52, 685-707. http://dx.doi.org/10.1080/00914030304931
[13] Kubo, S. and Kadla, J.F. (2004) Poly(Ethylene oxide)/Organosolv Lignin Blends: Relationship between Thermal Properties, Chemical Structure, and Blend Behavior. Macromolecules, 37, 6904-6911.
http://dx.doi.org/10.1021/ma0490552
[14] Hatakeyama, T., Izuta, Y., Hirose, S. and Hatakeyama, H. (2002) Phase Transitions of Lignin-Based Polycaprolactones and Their Polyurethane Derivatives. Polymer, 43, 1177-1182.
http://dx.doi.org/10.1016/S0032-3861(01)00714-5
[15] Hatakeyama, H. and Hatakeyama, T. (2005) Environmentally Compatible Hybrid-Type Polyurethane Foams Containing Saccharide and Lignin Components. Macromolecular Symposia, 224, 219-226.
http://dx.doi.org/10.1002/masy.200550619
[16] Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A. and Gandini, A. (2005) Oxypropylation of Lignins and Preparation of Rigid Polyurethane Foams from the Ensuing Polyols. Macromolecular Materials and Engineering, 290, 1009-1016. http://dx.doi.org/10.1002/mame.200500200
[17] Cui, G.J., Xia, W.B., Chen, G.J., Wei, M. and Huang, J. (2007) Enhanced Mechanical Performances of Waterborne Polyurethane Loaded with Lignosulfonate and Its Supramolecular Complexes. Journal of Applied Polymer Science, 106, 4257-4263. http://dx.doi.org/10.1002/app.27077
[18] Cateto, C.A., Barreiro, M.F., Rodrigues, A.E. and Belgacem, M.N. (2009) Optimization Study of Lignin Oxypropylation in View of the Preparation of Polyurethane Rigid Foams. Industrial & Engineering Chemistry Research, 48, 2583-2589. http://dx.doi.org/10.1021/ie801251r
[19] Chuang, F.S. (2007) Analysis of Thermal Degradation of Diacetylene-Containing Polyurethane Copolymers. Polymer Degradation and Stability, 92, 1393-1407.
http://dx.doi.org/10.1016/j.polymdegradstab.2007.02.020
[20] Pukánszky, B., Bagdi, K., Molnár, K. and Pukánnszky Jr., B. (2009) Thermal Analysis of the Structure of Segmented Polyurethane Elastomers: Relation to Mechanical Properties. Journal of Thermal Analysis and Calorimetry, 98, 825-832. http://dx.doi.org/10.1007/s10973-009-0528-z
[21] Thring, R.W., Vanderlaan, M.N. and Griffin, S.L. (1997) Polyurethanes from Alcell® Lignin. Biomass and Bioenergy, 13, 125-132. http://dx.doi.org/10.1016/S0961-9534(97)00030-5
[22] Rials, T.G. and Glasser, W.G. (1986) Engineering Plastics from Lignin-XIII, Effect of Lignin Structure on Polyurethane Network Formation. Holzforschuang, 40, 353-360.
http://dx.doi.org/10.1515/hfsg.1986.40.6.353
[23] Vanderlaan, M.N. and Thring, R.W. (1998) Polyurethanes from Alcell® Lignin Fractions Obtained by Sequential Solvent Extraction. Biomass and Bioenergy, 14, 525-531. http://dx.doi.org/10.1016/S0961-9534(97)10058-7
[24] Reimann, A., Morck, R., Yoshida, H., Hatakeyama, H. and Kringstad, K.P. (1990) Kraft Lignin in Polyurethanes, Ш, Effects of the Molecular Weight of PEG on the Properties of Polyurethanes from a Kraft Lignin-PEG-MDI System. Journal of Applied Polymer Science, 41, 39-50.
http://dx.doi.org/10.1002/app.1990.070410105
[25] Reimann, A., Morck, H., Hatakeyama, H. and Kringstad, K.P. (1991) Effects of the Structure of Lignin on the Properties of Lignin-Based Polyurethanes. 6th International Symposium on Wood and Pulping Chemistry, Tianjin, 29 April-4 May 1991, 523.
[26] Velankar, S. and Cooper, S.L. (1998) Microphase Separation and Rheological Properties of Polyurethane Melets. 1. Effect of Block Length. Macromolecules, 31, 9181-9192. http://dx.doi.org/10.1021/ma9811472
[27] Hernandez, R., Weksler, J., Padsalgikar, A., Choi, T., Angelo, E., Lin, J.S., Xu, L.C., Siedlecki, C.A. and Runt, J, (2008) A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities. Macromolecules, 41, 9767-9776. http://dx.doi.org/10.1021/ma8014454
[28] Lee, D.S. and Kim, S.C. (1984) Polyurethane Interpenetrating Polymer Networks (IPN’s) Synthesized under High Pressure. 1. Morphology and Tg Behavior of Polyurethane-Poly(Methyl methacrylate) IPN’s. Macromolecules, 17, 268-272. http://dx.doi.org/10.1021/ma00133a002
[29] Kubo, S. and Kadla, F. (2005) Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study. Biomacromolecules, 6, 2815-2821. http://dx.doi.org/10.1021/bm050288q
[30] Li, Y. and Sarkanen, S. (2002) Alkylated Kraft Lignin-Based Thermoplastic Blends with Aliphatic Polyesters. Macromolecules, 35, 9707-9715. http://dx.doi.org/10.1021/ma021124u
[31] Zhou, B., Zhou, A.S., Li, Y. and Feng, Y. (2009) Modified Polyurethane with Acetic Acid and Its Property. China Pulp and Paper, 28, 22-25.
[32] Li, Y., Aori, G.L., Sha, Z., Ma, X.J. and Zhou, B. (2008) Synthesis of Acetic Acid Lignin Polyurethane Foams. Transactions of China Pulp and Paper, 23, 55-59.
[33] Wang, P., Xie, Y.M., Aori, G.L., Zhan, H.Y. and Gan, D.N. (2004) Synthesis of Polyurethane from Acetic Acid Lignin and Its Properties. Chemistry and Industry of Forest Products, 24, 6.
[34] Wang, H.H., Ni, Y.H., Jahan, M.S., Liu, Z.H. and Schafer, T. (2010) Stability of Cross-Linked Acetic Acid Lignin-Containing Polyurethane. Journal of Thermal Analysis and Calorimetry, 103, 293-302.
http://dx.doi.org/10.1007/s10973-010-1052-x
[35] Kham, L., Bigot, Y.L., Mlayah, B.B. and Delmas, M. (2005) Bleaching of Solvent Delignified Wheat Straw Pulp. Appita Journal, 58, 135-137.
[36] Lam, H.Q., Bigot, Y.L., Delmas, M. and Avignon, G. (2001) Formic Acid Pulping of Rice Straw. Industrial Crops and Products, 14, 65-71. http://dx.doi.org/10.1016/S0926-6690(00)00089-3
[37] Cetin, N.S. and Ozmen, N. (2002) Use of Organosolv Lignin in Phenol-Formaldehyde Resins for Particleboard Production. I. Organosolv Lignin Modified Resins. International Journal of Adhesion and Adhesives, 22, 477-480.
[38] Kuho, S., Uraki, Y. and Sano, Y. (1998) Preparation of Carbon Fibers from Softwood Lignin by Atmospheric Acetic Acid Pulping. Carbon, 36, 1119-1124.
http://dx.doi.org/10.1016/S0008-6223(98)00086-4
[39] Sarkar, S. and Adhikari, B. (2001) Synthesis and Characterization of Lignin-HTPB Copolyurethane. European Polymer Journal, 37, 1391-1401. http://dx.doi.org/10.1016/S0014-3057(00)00264-0
[40] Flory, P.J. and Rehner Jr., J. (1943) Statistical Mechanics of Cross-Linked Polymer Networks, II, Swelling. The Journal of Chemical Physics, 11, 521-536. http://dx.doi.org/10.1063/1.1723792
[41] Bonini, C., D’Auria, M., Emanuele, L., Ferri, R., Pucciariello, R. and Sabia, A.R. (2005) Polyurethanes and Polyesters from Lignin. Journal of Applied Polymer Science, 98, 1451-1456.
http://dx.doi.org/10.1002/app.22277
[42] Li, X.R., Fei, G.Q. and Wang, H.H. (2006) Mechanical and Surface Properties of Membranes Prepared from Waterborne Cationic Hydroxyl-Terminated Polydimethylsiloxane/Polyurethane Surhfactant-Free Micro-Emulsion. Journal of Applied Polymer Science, 100, 40-46. http://dx.doi.org/10.1002/app.22524
[43] Ma, M.C.C., Wang, F.Y., Du, Y.C., Wu, C.L., Chiang, C.L. and Hung, A.Y.C. (2002) Intermolecular and Intramo- lecular Hydrogen Bonding of Poly(dimethylsiloxane)urethane-graft-poly(methyl methacrylate) Copolymers Based on 2,4-TDI and m-XDI. Journal of Applied Polymer Science, 86, 962-972. http://dx.doi.org/10.1002/app.11038
[44] Hernandez, R., Weksler, J., Padsalgikar, A. and Runt, J. (2007) Microstructural Organization of Three-Phase Polydimethylsiloxane-Based Segmented Polyurethanes. Macromolecules, 40, 5441-5449.
http://dx.doi.org/10.1021/ma070767c
[45] Sreedhar, B., Chattopadhyay, D.K. and Swapna, V. (2006) Thermal and Surface Characterization of Polyurethane-Urea Clay Nanocomposite Coatings. Journal of Applied Polymer Science, 100, 2393-2401.
http://dx.doi.org/10.1002/app.23140
[46] Chattopadhyay, D.K., Mishra, A.K., Sreedhar, B. and Raju, K.V.S.N. (2006) Thermal and Viscoelastic Properties of Polyurethane-Imide/Clay Hybrid Coatings. Polymer Degradation and Stability, 91, 1837-1849.
http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.