[1]
|
Honeycomb, J. and Anand, R. (1989) Molecular Analysis of the Duchenne Muscular Dystrophy Locus. Comparative Biochemistry and Physiology, 93A, 125-131. http://dx.doi.org/10.1016/0300-9629(89) 90199-0
|
[2]
|
Millay, D.P., Sargent, M.A., Osinska, H., Baines, C.P., Barton, E.R., Vuagniaux, G., Sweeney, H.L., Ro- bbins, J. and Molkentin, J.D. (2008) Genetic and Pharmacologic Inhibition of Mitochondrial Dependent Necrosis Attenuates Muscular Dystrophy. Nature Medicine, 14, 442-447. http://dx.doi.org/10.1038/ nm1736
|
[3]
|
Perumal, A.R., Rajeswaran, J. and Nalini, A. (2013) Neuropsychological Profile of Duchenne Muscular Dystrophy. Applied Neuropsychology: Child. http://dx.doi.org/10.1080/21622965.2013.802649
|
[4]
|
Deconinck, N. and Dan, B. (2007) Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses. Pediatric Neurology, 36, 1-7. http://dx.doi.org/10.1016/j.pediatrneurol.2006.09.016
|
[5]
|
Jorgensen, L.H., Blain, A., Greally, E., Laval, S.H., Blamire, A.M., Davison, B.J., Brinkmeier, H., MacGowan, G.A., Schroder, H.D., Bushby, K., Straub, V. and Lochmüller, H. (2011) Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle. American Journal of Pathology, 178, 273-283.
http://dx.doi.org/10.1016/j.ajpath.2010.11.027
|
[6]
|
Albrekkan, F.M. and Kelly-Worden, M. (2013) Mitochondrial Dysfunction and Alzheimer’s Disease. Op- en Journal of Endocrine and Metabolic Diseases, 3, 14-19. http://dx.doi.org/10.4236/ojemd.2013.32 A003
|
[7]
|
Pinton, P., Giorgi, C., Siviero, R., Zecchini, E. and Rizzuto, R. (2008) Calcium and Apoptosis: ER-Mitoc- hondrial Ca2+ Transfer and the Control of Apoptosis. Oncogene, 27, 6407-6418. http://dx.doi.org/1 0.1038/onc.2008.308
|
[8]
|
Onopiuk, M., Brutkowski, W., Wierzbika, K., Wojcichowska, S., Szczepanowka, J., Fronk, J., Lochmuller, H., Gorecki, D.C. and Zablocki, K. (2009) Mutation in Dystrophin-Encoding Gene Affects Energy Metabolism in Mouse Myoblasts. Biochemical and Biophysical Research Communications, 386, 463-466. http://dx.doi.org/10.1016/j.bbrc.2009.06.053
|
[9]
|
Kavanagh, N., Ainscow, E.K. and Brand, M.D. (2000) Calcium Regulation of Oxidative Phosphorylation in Rat Skeletal Muscle Mitochondria. Biochemica et Biophysica Acta, 1457, 57-70.
http://dx.doi.org/10. 1016/S0005-2728(00)00054-2
|
[10]
|
Gunter, T.E., Yule, D.I., Gunter, K.K., Eliseev, R.A. and Salter, J.D. (2004) Calcium and Mitochondria. FASEB Letters, 567, 96-102. http://dx.doi.org/10.1016/j.febslet.2004.03.071
|
[11]
|
Godin, R., Daussin, F., Matecki, S., Li, T., Petrof, B.J. and Burelle, Y. (2012) Peroxisome Proliferator-Activated Receptor γ Coactivator1-α Gene Transfer Restores Mitochondrial Biomass and Improves Mitochondrial Calcium Handling in Post-Necrotic mdx Mouse Skeletal Muscle. The Journal of Physiology, 590, 5487-5502.
http://dx.doi.org/10.1113/jphysiol.2012.240390
|
[12]
|
Green, D.R. and Kroemer, G. (2004) The Pathophysiology of Mitochondrial Cell Death. Science, 305, 626-629.
http://dx.doi.org/10.1126/science.1099320
|
[13]
|
Zamzami, N., Larochette, N. and Kroemer, G. (2005) Mitochondrial Permeability Transition in Apoptosis and Necrosis. Cell Death and Differentiation, 12, 1478-1480. http://dx.doi.org/10.1038/sj.cdd.4401682
|
[14]
|
Burelle, Y., Khairallah, M., Ascah, A., Allen, B.G., Deschepper, C.F., Petrof, B.J. and Rosiers, D.C. (2010) Alterations in Mitochondrial Function as a Harbinger of Cardiomyopathy: Lessons from the Dystrophic Heart. Journal of Molecular and Cellular Cardiology, 48, 310-321. http://dx.doi.org/10.1016/j.yjmcc.20 09.09.004
|
[15]
|
Glancy, B. and Balaban, R.S. (2012) Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetic. Biochemistry, 51, 2959-2973. http://dx.doi.org/10.1021/bi2018909
|
[16]
|
Sharma, U., Atri, S., Sharma, M.C., Sakar, C. and Jagannathan, N.R. (2003) Skeletal Muscle Metabolism in Duchenne Muscular Dystrophy (DMD): An In-Vitro Proton NMR Spectroscopy Study. Magnetic Resonance Imaging, 21, 145-153. http://dx.doi.org/10.1016/S0730-725X(02)00646-X
|
[17]
|
Griffin, J.L., Williams, H.J., Sang, E., Clarke, K., Rae, C. and Nicholson, J.K. (2001) Metabolic Profiling of Genetic Disorders: A Multitissue 1H-Nuclear Magnetic Resonance Spectroscopic and Pattern Recogni- tion Study into Dystrophic Tissue. Analytical Biochemistry, 293, 16-21. http://dx.doi.org/10.1006/abio. 2001.5096
|
[18]
|
Naziroglu, M. (2009) Role of Selenium on Calcium Signaling and Oxidative Stress-Induced Molecular Pathways in Epilepsy. Neurochemical Research, 34, 2181-2191. http://dx.doi.org/10.1007/s11064-009-0015-8
|
[19]
|
Ma, Q. (2014) Advances in Mechanisms of Anti-Oxidation. Discovery Medicine, 17, 121-130.
|
[20]
|
Carriedo, S.G., Sensi, S.L., Yin, H.Z. and Weiss, J.H. (2000) AMPA Exposures Induce Mitochondrial Ca2+ Overload and ROS Generation in Spinal Motor Neurons in Vitro. The Journal of Neuroscience, 20, 240-250.
|
[21]
|
Pervaiz, S., Taneja, R. and Ghaffari, S. (2009) Oxidative Stress Regulation of Stem and Progenitor Cells. Antioxidants & Redox Signaling, 11, 2777-2789. http://dx.doi.org/10.1089/ars.2009.2804
|
[22]
|
Bernardi, P. (2013) The Mitochondrial Permeability Transition Pore: A Mystery Solved? Frontiers in Physiology, 4, 95.
http://dx.doi.org/10.3389/fphys.2013.00095
|
[23]
|
Kinnally, K.W., Campo, M.L. and Tedeschi, H. (1989) Mitochondrial Channel Activity Studied by Patch- Clamping Mitoplast. Journal of Bioenergetics and Biomembranes, 21, 497-506. http://dx.doi.org/10.1 007/BF00762521
|
[24]
|
Petronilli, V., Szabó, I. and Zoratti, M. (1989) The Inner Mitochondrial Membrane Contains Ion-Condu- cting Channels Similar to Those Found in Bacteria. FEBS Letters, 259, 137-143. http://dx.doi.org/10.1 016/0014-5793(89)81513-3
|
[25]
|
Zoratti, M., Szabó, I. and De Marchi, U. (2005) Mitochondrial Permeability Transitions: How Many Do- ors to the House? Biochimica et Biophysica Acta (BBA), Bioenergetics, 1706, 40-52.
http://dx.doi.org/ 10.1016/j.bbabio.2004.10.006
|
[26]
|
Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. and Schmid, F.X. (1989) Cyclophilin and Peptidyl-Prolyl cis-Trans Isomerase Are Probably Identical Proteins. Nature, 337, 476-478.
http://dx.doi.org/10.1038/337476a0
|
[27]
|
Takahashi, N., Hayano, T. and Suzuki, M. (1989) Peptidyl-Prolyl cis-Trans Isomerase Is the Cyclosporin A-Binding Protein Cyclophilin. Nature, 337, 473-475. http://dx.doi.org/10.1038/337473a0
|
[28]
|
Connern, C.P. and Halestrap, A.P. (1992) Purification and N-Terminal Sequencing of Peptidyl-Prolyl cis-Trans Isomerase from Rat Liver Mitochondrial Matrix Reveals the Existence of a Distinct Mitochondrial Cyclophilin. Biochemical Journal, 284, 381-385.
|
[29]
|
Connern, C.P. and Halestrap, A.P. (1994) Recruitment of Mitochondrial Cyclophilin to the Mitochondrial Inner Membrane under Conditions of Oxidative Stress That Enhance the Opening of a Calcium-Sensitive Non-Specific Channel. Biochemical Journal, 302, 321-324.
|
[30]
|
Marchi, S. and Pinton, P. (2014) The Mitochondrial Calcium Uniporter Complex: Molecular Components, Structure and Physiopathological Implications. The Journal of Physiology, 592, 829-839.
http://dx.doi.org/10.1113/jphysiol.2013.268235
|
[31]
|
Akopova, O.V., Kolchynskayia, L.Y., Nosar, V.Y., Smyrnov, A.N., Malisheva, M.K., Man’kovskaia, Y.N. and Sahach, V.F. (2011) The Effect of Permeability Transition Pore Opening on Reactive Oxygen Species Production in Rat Brain Mitochondria. Ukrainskii Biokhimicheskii Zhurnal, 83, 46-55.
|
[32]
|
Skulachev, V. (1996) Role of Uncoupled and Non-Coupled Oxidations in Maintenance of Safely Low Levels of Oxygen and Its One-Electron Reductants. Quarterly Reviews of Biophysics, 29, 169-202.
http://dx.doi.org/10.1017/S0033583500005795
|
[33]
|
Korshunov, S.S., Skulachev, V.P. and Starkov, A.A. (1997) High Protonic Potential Actuates a Mechanism of Production of Reactive Oxygen Species in Mitochondria. FEBS Letters, 416, 15-18.
http://dx.doi.org/10.1016/S0014-5793(97)01159-9
|
[34]
|
Suski, J.M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J. and Wieckowski, M.R. (2012) Relation between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 810, 183-205.
http://dx.doi.org/10.1007/978-1-61779-382-0_12
|
[35]
|
Strauss, M., Hofhaus, G., Schroder, R.R. and Kühlbrandt, W. (2008) Dimer Ribbons of ATP Synthase Shape the Inner Mitochondrial Membrane. EMBO Journal, 27, 1154-1160. http://dx.doi.org/10.1038/ emboj.2008.35
|
[36]
|
Thomas, D., Bron, P., Weimann, T., Dautant, A., Giraud, M.F., Paumard, P., et al. (2008) Supramolecular Organization of the Yeast F1F0-ATP Synthase. Biology of the Cell, 100, 591-603. http://dx.doi.org/10.1042/BC20080022
|
[37]
|
Rees, D.M., Leslie, A.G. and Walker, J.E. (2009) The Structure of the Membrane Extrinsic Region of Bovine ATP Synthase. Proceedings of the National Academy of Sciences of the United States of America, 106, 21597-21601.
http://dx.doi.org/10.1073/pnas.0910365106
|
[38]
|
Baker, L.A., Watt, I.N., Runswick, M.J., Walker, J.E. and Rubinstein, J.L. (2012) Arrangement of Subunits in Intact Mammalian Mitochondrial ATP Synthase Determined by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 109, 11675-11680. http://dx.doi.org/ 10.1073/pnas.1204935109
|
[39]
|
Davies, K.M., Anselmi, C., Wittig, I., Faraldo-Gomez, J.D. and Kühlbrandt, W. (2012) Structure of the Yeast F1F0-ATP Synthase Dimer and Its Role in Shaping the Mitochondrial Cristae. Proceedings of the National Academy of Sciences of the United States of America, 109, 13602-13607. http://dx.doi.org/ 10.1073/pnas.1204593109
|
[40]
|
Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., et al. (2013) Dimers of Mitochondrial ATP Synthase Form the Permeability Transition Pore. Proceedings of the National Aca- demy of Sciences of the United States of America, 110, 5887-5892. http://dx.doi.org/10.1073/pnas. 1217823110
|
[41]
|
Csukly, K., Ascah, A., Matas, J., Gardiner, P.F., Fontaine, E. and Burelle, Y. (2006) Muscle Denervation Promotes Opening of the Permeability Transition Pore and Increases the Expression of Cyclophilin D. The Journal of Physiology, 574, 319-327. http://dx.doi.org/10.1113/jphysiol.2006.109702
|
[42]
|
Reutenauer, J., Dorchies, O.M., Patthey-Vuadens, O., Vuagniaux, G. and Ruegg, U.T. (2008) Investigation of Debio 025, a Cyclophilin Inhibitor, in the Dystrophic mdx Mouse, a Model for Duchen- ne Muscular Dystrophy. British Journal of Pharmacology, 155, 574-584. http://dx.doi.org/10.1038/bjp. 2008.285
|
[43]
|
Pellegrini, C., Zulian, A., Gualandi, F., Manzati, E., Merlini, L., Michelini, M.E., Benassi, L., Marmiroli, S., Ferlini, A., Sabatelli, P., Bernardi, P. and Maraldi, N.M. (2013) Melanocytes—A Novel Tool to Study Mitochondrial Dysfunction in Duchenne Muscular Dystrophy. Journal of Cellular Physiology, 228, 1323-1331.
http://dx.doi.org/10.1002/jcp.24290
|
[44]
|
Pauly, M., Daussin, F., Burelle, Y., Li, T., Godin, R., Fauconnier, J., Koechlin-Ramonatxo, C., Hugon, G., Lacampagne, A., Coisy-Quivy, M., Liang, F., Hussain, S., Matecki, S. and Petrof, B.J. (2012) AMPK Activation Stimulates Autophagy and Ameliorates Muscular Dystrophy in the mdx Mouse Diaphragm. American Journal of Pathology, 181, 583-592.
|
[45]
|
Tian, L.J., Cao, J.H., Deng, X.Q., Zhang, C.L., Qian, T., Song, X.X. and Huang, B.S. (2014) Gene Expression Profiling of Duchenne Muscular Dystrophy Reveals Characteristics along Disease Progression. Genetics and Molecular Research, 28, 1402-1411.
|