[1]
|
Liouville, J. and Sturm, J.C.F. (1837) Extrait d’une méemoire sur le développement des fonctions en serie. Journal de Mathématiques Pures et Appliquées, 2, 220-223.
|
[2]
|
Sturm, J.C.F. (1836) Mémoire sur les équations différentielles linéaires du second ordre. Journal de Mathématiques Pures et Appliquées, 1, 106-186.
|
[3]
|
Sturm, J.C.F. (1837) Mémoire sur une classe d’équations différentielles partielles. Journal de Mathématiques Pures et Appliquées, 2, 373-444.
|
[4]
|
Weyl, H. (1910) üeber gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwichlungen willkürlicher funktionen. Mathematische Annalen, 68, 220-269. http://dx.doi.org/10.1007/BF01474161
|
[5]
|
Naimark, M.A. (1968) Linear Differential Operators. Ungar, New York.
|
[6]
|
Everitt, W.N. and Markus, L. (1997) The Glazman-Krein-Naimark Theorem for Ordinary Differential Operators, New Results in Operator Theory and Its Applications. Operator Theory: Advances and Applications, 98, 118-130.
|
[7]
|
Cao, X. and Wu, H. (2004) Geomtric Aspects of High-Order Eigenvalue Problems I. Structures on Spaces of Boundary Conditions. International Journal of Mathematics and Mathematical Sciences, 13, 647-678. http://dx.doi.org/10.1155/S0161171204303522
|
[8]
|
Coddington, E. and Levinson, N. (1955) Theory of Ordinary Differential Equations. McGraw-Hill, New York.
|
[9]
|
Weidmann, J. (1987) Spectral Theory of Ordinary Differential Operator, Lecture Notes in Mathematics, Vl 1258. Springer-Verlag, Berlin.
|
[10]
|
Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, Waltham.
|
[11]
|
Kong, Q., Wu, H. and Zettl, A. (1997) Dependence of Eigenvalues on the Problem. Mathematische Nachrichten, 188, 173-201. http://dx.doi.org/10.1002/mana.19971880111
|
[12]
|
Kong, Q., Wu, H. and Zettl, A. (1999) Dependence of the n-th Sturm-Liouville Eigenvalue on the Problem. Journal of Differential Equations, 156, 328-354. http://dx.doi.org/10.1006/jdeq.1998.3613
|
[13]
|
Kong, Q., Wu, H. and Zettl, A. (2000) Geometric Aspects of Sturm-Liouville Problems, I. Structures on Spaces of Boundary Conditions. Proceedings of the Royal Society of Edinburgh Section A, 130, 561-589.
|
[14]
|
Zettl, A. (2005) Sturm-Liouville Theory. Mathematical Surveys and Monographs, Volume 121. American Mathematical Society.
|
[15]
|
Gohberg, I.C. and Krein, M.G. (1969) Introduction to the Theory of Linear Non-Self-Adjoint Operator. Translation of Mathematical Monographs 18, American Mathematical Society, Providence.
|
[16]
|
Keldysh, M.V. (1951) On Eigenvalues and Eigenfunctions of Some Classes of Non Self-Adjoint Equations. Doklady Akademii Nauk SSSR, 77, 11-14.
|
[17]
|
Marcenko, V.A. (1963) Expansion in Eigenfuctions of Non-Self-Adjoint Singular Differential Operators of Second Order. American Mathematical Society Translations, 25, 77-130.
|
[18]
|
Eastham, M., Kong, Q., Wu, H. and Zettl, A. (1999) Inequalities among Eigenvalues of Sturm-Liouville Problems. Journal of Inequalities and Applications, 3, 25-43.
|
[19]
|
Kong, Q., Wu, H. and Zettl, A. (1999) Inequalities among Eigenvalues of Singular Sturm-Liouville Problems. Dynamic Systems and Applications, 8, 517-531.
|
[20]
|
Kong, Q., Wu, H. and Zettl, A. (2001) Sturm-Liouville Problems with Finite Spectrum. Journal of Mathematical Analysis and Applications, 263, 748-762. http://dx.doi.org/10.1006/jmaa.2001.7661
|
[21]
|
Kong, Q., Wu, H. and Zettl, A. (2004) Multiplicity of Sturm-Liouville Eigenvalues. Journal of Computational and Applied Mathematics, 171, 291-309. http://dx.doi.org/10.1016/j.cam.2004.01.036
|
[22]
|
Wang, Z. and Wu, H. (2005) Equality of Multiplicities of a Sturm-Liouville Eigenvalue. Journal of Mathematical Analysis and Applications, 306, 540-547. http://dx.doi.org/10.1016/j.jmaa.2004.10.041
|
[23]
|
Shi, D. and Huang, Z. (2010) Relationship of Multiplicities of a High-Order Ordinary Differential Operator Eigenvalue. Acta Mathematica Sinica, Chinese Series, 53, 763-772.
|
[24]
|
Wang, Z. and Wu, H. (2009) Sturm-Liouville Problems with Limit-Circle End Points. Pacific Journal of Applied Mathematics, 1, 421-447.
|