[1]
|
Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel, L.A., Pollak, M., Regensteiner, J.G. and Yee, D. (2010) Diabetes and Cancer: A Consensus Report. Diabetes Care, 33, 1674-1685. http://dx.doi.org/10.2337/dc10-0666
|
[2]
|
Eto, I. (2013) Expression of p27Kip1, A Cell Cycle Repressor Protein, Is Inversely Associated with Potential Carcinogenic Risk in the Genetic Rodent Models of Obesity and Long-Lived Ames Dwarf Mice. Metabolism, 62, 873-888. http://dx.doi.org/10.1016/j.metabol.2013.01.001
|
[3]
|
Hakkak, R., Holley, A.W., Bunn, R.C., Winters, A. and MacLeod, S. (2005) Effects of Obesity on Serum Insulin Growth Factor 1 (IGF-1) Levels in Lean and Obese Female Zucker Rats Following DMBA Treatment. The FASEB Journal-Proceedings, 19, A993.
|
[4]
|
Hakkak, R., Holley, A.W., Gnoand, F. and Owens, R. (2005) Effects of Obesity on Serum Adiponectin Levels and Breast Cancer Development in Lean and Obese Female Zucker Rats Following DMBA Ttreatment. The FASEB Journal-Proceedings, 19, A993.
|
[5]
|
Hakkak, R., Holley, A.W., MacLeod, S., Simpson, P. and Korourian, P. (2005) Obesity Promotes DMBA Induced Mammary Tumor Development in Female Zucker Rats. The FASEB Journal-Proceedings, 19, A774.
|
[6]
|
Hakkak, R., Holley, A.W., MacLeod, S., Simpson, P., Fuchs, G., Jo, C.H., Kieber-Emmons, T. and Korourian, S. (2005) Obesity Promotes7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumor Development in Female Zucker Rats. Breast Cancer Research, 7, R627-R633. http://dx.doi.org/10.1186/bcr1263
|
[7]
|
Hakkak, R., Shaaf, S., Jo, C.H., MacLeod, S. and Korourian, S. (2010) Dehydroepiandrosterone Intake Protects against 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumor Development in the Obese Zucker Rat Model. Oncology Report, 24, 357-362. http://dx.doi.org/10.3892/or_00000867
|
[8]
|
Hakkak R., MacLeod, S., Shaaf, S., Holley, A. W., Simpson, P., Fuchs, G., Jo, C.H., Kieber-Emmons, T. and Korourian, S. (2007) Obesity Increases the Incidence of 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumors in Ovariectomized Zucker Rat. International Journal of Oncology, 30, 557-563.
|
[9]
|
Whitehead, T., Holley, A.W., Kieber-Emmons, T., Korourian, S. and Hakkak, R. (2005) Metabolic Phenotype of the DMBA-induced Mammary Tumor in Obese Female Zucker Rats. Proceedings of the American Association for Cancer Research, 46, 6074.
|
[10]
|
Ikeno, Y., Bronson, R.T., Hubbard, G.B., Lee, S. and Bartke, A. (2003) Delayed Occurrence of Fatal Neoplastic Diseases in Ames Dwarf Mice: Correlation to Extended Longevity. Journal of Gerontology Series A, 58, B291-B296. http://dx.doi.org/10.1093/gerona/58.4.B291
|
[11]
|
Sharp, Z.D. and Bartke, A. (2005) Evidence for Down-Regulation of Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR)-Dependent Translation Regulatory Signaling Pathways in Ames Dwarf Mice. Journal of Gerontology Series A, 60, 293-300.
|
[12]
|
Eto, I. (2006) Nutritional and Chemopreventive Anti-Cancer Agents Up-Regulate Expression of p27Kip1, A Cyclin-Dependent Kinase Inhibitor, in Mouse JB6 Epidermal and Human MCF7, MDAMB-321 and AU565 Breast Cancer Cells. Cancer Cell International, 6, 1-19. http://www.cancerci.com/content/6/1/20 http://dx.doi.org/10.1186/1475-2867-6-20
|
[13]
|
Eto, I. (2010) Upstream Molecular Signaling Pathways of p27(Kip1) Expression: Effects of 4-Hydroxytamoxifen, Dexamethasone, and Retinoic Acids. Cancer Cell International, 10, 1-19. http://www.cancerci.com/content/10/1/3 http://dx.doi.org/10.1186/1475-2867-10-3
|
[14]
|
Eto, I. (2011) Upstream Molecular Signaling Pathways of p27(Kip1) Expression in Human Breast Cancer Cells in Vitro: Differential Effects of 4-Hydroxytamoxifen and Deficiency of Either D-(+)-Glucose or L-Leucine. Cancer Cell International, 11, 1-17. http://www.cancerci.com/content/11/1/31 http://dx.doi.org/10.1186/1475-2867-11-31
|
[15]
|
Kullmann, M., Goepfert, U., Siewe, B. and Hengst, L. (2002) ELAV/Hu Proteins Inhibit p27 Translation via an IRES Element in the p27 5’UTR. Genes & Development, 16, 3087-3099. http://dx.doi.org/10.1101/gad.248902
|
[16]
|
Goepfert, U., Kullmann, M. and Hengst, L. (2003) Cell Cycle-Dependent Translation of p27 Involves a Responsive Element in Its 5’-UTR That Overlaps with a uORF. Human Molecular Genetics, 12, 1767-1779. http://dx.doi.org/10.1093/hmg/ddg177
|
[17]
|
Awazu, M., Omori, S., Ishikura, K., Hida, M. and Fujita, H. (2003) The Lack of CyclinKinase Inhibitor p27Kip1 Ameliorates Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology, 14, 699-708. http://dx.doi.org/10.1097/01.ASN.0000051726.41601.C0
|
[18]
|
Wolf, G. and Shankland, S.J. (2003) p27Kip1: The “Rosebud” of Diabetic Nephropathy? Journal of the American Society of Nephrology, 14, 819-922. http://dx.doi.org/10.1097/01.ASN.0000057518.58420.E4
|
[19]
|
Wolf, G., Schroeder, R., Thaiss, F., Ziyadeh, F.N., Helmchen, U. and Stahl, R.A. (1998) Glomerular Expression of p27Kip1 in Diabetic db/db Mouse: Role of Hyperglycemia. Kidney International, 53, 869-879. http://dx.doi.org/10.1111/j.1523-1755.1998.00829.x
|
[20]
|
Shankland, S.J. (1998) The Growing Role for the Cyclin Kinase Inhibitor p27Kip1 in Renal Disease. Kidney International, 54, 2241-2242. http://dx.doi.org/10.1038/4499991
|
[21]
|
Wolf, G. (2000) Cell Cycle Regulation in Diabetic Nephropathy. Kidney International, 58, S59-S66. http://dx.doi.org/10.1046/j.1523-1755.2000.07710.x
|
[22]
|
Wolf, G., Schanze, A., Stahl, R.A., Shankland, S.J. and Amann, K. (2005) p27Kip1 Knockout Mice Are Protected from Diabetic Nephropathy: Evidence for p27Kip1 Haplotype Insufficiency. Kidney International, 68, 1583-1589. http://dx.doi.org/10.1111/j.1523-1755.2005.00570.x
|
[23]
|
Wolf, G. and Ziyadeh, F.N. (2007) Cellular and Molecular Mechanisms of Proteinuria in Diabetic Nephropathy. Nephron Physiololgy, 106, 26-31. http://dx.doi.org/10.1159/000101797
|
[24]
|
Rüster, C. and Wolf, G. (2006) Renin-Angiotensin-Aldosterone System and Progression of Renal Disease. Journal of the American Society of Nephrology, 17, 2985-2991. http://dx.doi.org/10.1681/ASN.2006040356
|
[25]
|
Wolf, G. (2006) Renal Injury Due to Renin-Angiotensin-Aldosterone System Activation of the Transforming Growth Factor-β Pathway. Kidney International, 70, 1914-1919.
|
[26]
|
Loeffle, I., Hopfer, U., Koczan, D. and Wolfe, G. (2011) Type VIII Collagen Modulates TGF-β1-Induced Proliferation of Mesangial Cells. Journal of the American Society of Nephrology, 22, 649-663. http://dx.doi.org/10.1681/ASN.2010010098
|
[27]
|
Loeffler, I., Rüster, C., Franke, S., Liebisch, M. and Wolf, G. (2013) Erythropoietin Ameliorates Podocyte Injury in Advanced Diabetic Nephropathy in the db/db Mouse. American Journal of Physiology-Renal Physiology, 305, F911-F918. http://dx.doi.org/10.1152/ajprenal.00643.2012
|
[28]
|
Kanwar, Y.S., Wada, J., Sun, L., Xie, P., Wallner, E.I., Chen, S., Chugh, S. and Danesh, F.R. (2008) Diabetic Nephropathy: Mechanisms of Renal Disease Progression. Experimental Biology and Medicine (Maywood), 233, 4-11. http://dx.doi.org/10.3181/0705-MR-134
|
[29]
|
Wolf, G. (Ed.) (2006) Obesity and the Kidney. Basel, Karger.
|
[30]
|
Suzuki, S., Ohashi, N. and Kitagawa, M. (2013) Roles of the Skp2/p27 Axis in the Progression of Chronic Nephropathy. Cellular and Molecular Life Sciences, 70, 3277-3287. http://dx.doi.org/10.1007/s00018-012-1232-x
|
[31]
|
Zhong, L., Georgia, S., Tschen, S.I., Nakayama, K. and Bhushan, A. (2007) Essential Role of Skp2-Mediated p27 Degradation in Growth and Adaptive Expansion of Pancreatic β Cells. Journal of Clinical Investigation, 117, 2869-2876. http://dx.doi.org/10.1172/JCI32198
|
[32]
|
Tschen, S.I., Georgia, S., Dhawan, S. and Bhushan, A. (2011) Skp2 Is Required for Incretin Hormone-Mediated β-Cell Proliferation. Molecular Endocrinology, 25, 2134-2143. http://dx.doi.org/10.1210/me.2011-1119
|
[33]
|
Georgia, S. and Bhushan, A. (2006) p27 Regulates the Transition of β-Cells from Quiescence to Proliferation. Diabetes, 55, 2950-2956. http://dx.doi.org/10.2337/db06-0249
|