Elevated Temperatures Tensile Characteristics of Cast A356/Al2O3 Nanocomposites Fabricated Using a Combination of Rheocasting and Squeeze Casting Techniques
El-Sayed Youssef El-Kady, Tamer Samir Mahmoud, Mohamed Abdel-Aziz Sayed
DOI: 10.4236/msa.2011.25050   PDF    HTML     8,843 Downloads   16,110 Views   Citations


In the present investigation, the tensile properties of A356/Al2O3 nanocomposites at both ambient and elevated temperatures were studied. The A356/Al2O3 nanocomposites were fabricated using a combination between the rheocasting and squeeze casting techniques. The A356 matrix alloy was reinforced with Al2O3 nanoparticulates having average sizes of 60 nm and 200 nm with different volume fractions up to 5 vol%. The results revealed that the A356/Al2O3 nanocomposites exhibited better mechanical properties than the A356 monolithic alloy. Such improvement in the mechanical properties was observed at both room and elevated temperatures up to 300°C. Increasing the volume fraction and/or reducing the size of Al2O3 nanoparticulates increase both the tensile and yield strengths of the nanocomposites.

Share and Cite:

E. El-Kady, T. Mahmoud and M. Sayed, "Elevated Temperatures Tensile Characteristics of Cast A356/Al2O3 Nanocomposites Fabricated Using a Combination of Rheocasting and Squeeze Casting Techniques," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 390-398. doi: 10.4236/msa.2011.25050.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] ASM Handbook, “Composites,” ASM International, Vol. 21, 2001.
[2] N. Chawla and K. K. Chawla, “Metal Ma-trix Composites,” Springer Science and Business Media Inc., New York, 2006,
[3] M. Kok, “Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites,” Journal of Materials Processing Technology, Vol. 161, No. 3, 2005, pp. 381-387.
[4] T. S. Srivatsan, M. Al-Hajri, C. Smith and M. Pet- raroli, “The Tensile Response and Fracture Be-havior of 2009 Aluminum Alloy Metal Matrix Compos-ite,” Materials Science and Engineering: A, Vol. 346, No. 1-2, 2003, pp. 91-100. doi:10.1016/S0921-5093(02)00481-1
[5] F. S. Rashed, M. R. Ibrahim and T. S. Mahmoud, “Mic- rostructural and Mechanical Characteristics of A356/SiCp MMCs Produced by Rheocasting Technique,” Journal of Engi-neering and Applied Sciences, Vol. 52, No. 5, October 2005, pp. 1001-1018.
[6] I. S. El-Mahallawi, K. Eigen-field, F. Kouta, A. Hussein, T. S. Mahmoud, R. M. Ra-gaie, A. Y. Shash and W. Abou-Al-Hassan, “Synthesis and Characterization of New Cast A356/(Al2O3)P Metal Matrix Nano-Composites,” ASME, In the proceeding of the 2nd Multifunctional Nano- composites & Nanomateri-als, International Conference & Exhibition, Cario, Janu-ary 2008.
[7] J. Lan, Y. Yang and X. C. Li, “Micro-structure and Microhardness of SiC Nanoparticles Rein-forced Magnesium Composites Fabricated by Ultrasonic Method,” Materials Science and Engineering: A, Vol. 386, No. 1-2, 2004, pp. 284-290.
[8] M. Habibne-jad-Korayem, R. Mahmudi and W. J. Poole, “Enhanced Properties of Mg-Based Nano-Composites Reinforced with Al2O3 Nano-Particles,” Materials Science and Engi-neering: A, Vol. 519, No. 1-2, 2009, pp. 198-203. doi:10.1016/j.msea.2009.05.001
[9] F. Y. C. Boey, Z. Yuan and K. A. Khor, “Mechanical Alloying for the Ef-fective Dispersion of Sub-Micron SiCp Reinforcements in Al-Li Alloy Composite,” Materials Science and Engi-neering: A, Vol. 252, No. 2, 1998, pp. 276-287. doi:10.1016/S0921-5093(98)00566-8
[10] J. Hashim, L. Looney and M. S. J. Hashmi, “Metal Matrix Composites: Production by the Stir Casting Method,” Journal of Ma-terials Processing Technology, Vol. 92-93, 1999, pp. 1-7. doi:10.1016/S0924-0136(99)00118-1
[11] T. S. Mah-moud, “Tribological Characteristics of A390/Grp MMCs Fabricated Using a Combination of Rheocasting and Squeeze Casting Techniques,” Proceedings of the IMechE, Part C: Journal of Mech. Engineering Science, Vol. 222(C2), 2008, pp. 257-266.
[12] F. R. Rahmani and F. Akhlaghi, “Effect of Extrusion Tem- perature on the Microstructure and Porosity of A356-SiCp Compos-ites,” Journal of Materials Processing Technology, Vol. 187-188, 2007, pp. 433-436. doi:10.1016/j.jmatprotec.2006.11.077
[13] P. Cavaliere, E. Cerri and E. Evangelista, “Isothermal Forging Model-ling of 2618/20% Al2O3p Metal Matrix Composite,” Journal of Alloys and Compounds, Vol. 378, No. 1-2, 2004, pp. 117-122. doi:10.1016/j.jallcom.2003.10.103
[14] J. Hashim, L. Looney and M. S. J. Hashmi, “Particle Dis- tribution in Cast Metal Matrix Composites: Part I,” Journal of Mate-rials Processing Technology, Vol. 123, No. 2, 2002, pp. 251-257. doi:10.1016/S0924-0136(02)00098-5
[15] E. Y. EL-Kady, “Behavior of as Cast and Hot Rolled Compos-ites at Room and Elevated Temperature,” Alexandria En-gineering Journal, Vol. 42, No. 6, 2003, pp. 669-680.
[16] T. A. Khalifa and T. S. Mahmoud, “Ele-vated Temperatures Mechanical Properties of Al Alloy AA6063/SiCp MMCs,” Proceedings of World Congress on Engineering 2009 (WCE 2009), London, Vol. II, July 2009, pp. 1557-1562.
[17] T. G. Nieh, D. R. Lesuer and C. K. Syn, “Tensile and Fatigue Properties of a 25 vol% SiC Particulate Reinforced 6090 Al Composite at 300?C,” Scripta Metallurgica et Materialia, Vol. 32, No. 5, 1995, pp. 707-712. doi:10.1016/0956-716X(95)91590-L
[18] J. W. Luster, M. Thumann and R. Baumann, “Mechanical Properties of Aluminum Alloy 6061-Al2O3 Composites,” Materials Science and Technology, Vol. 9, 1993, pp. 853- 862.
[19] J. Singh, S. K. Goel, and V. N. S. Mathur, “Ele-vated Temperature Tensile Properties of Squeezed-Cast Al-Al2O3- MgO Particulate MMCs up to 573 K”, Journal of Materials Science, Vol. 26, No. 10, 1991, pp. 2750-2758. doi:10.1007/BF02387746
[20] J. O?oro, M. D. Salvador and L. E. G. Cambronero, “High- Temperature Mechanical Properties of Aluminium Alloys Reinforced with Boron Carbide Particles,” Materials Science and Engineering: A, Vol. 499, No. 1-2, 2009, pp. 421-426. doi:10.1016/j.msea.2008.09.013
[21] A. A. Yar, M. Montazerian, H. Abdizadeh and H. R. Baharvandi, “Mi-crostructure and Mechanical Properties of Aluminum Al-loy Matrix Composite Reinforced with Nano-Particle Mgo,” Journal of Alloys and Compounds, Vol. 484, No. 1-2, 2009, pp. 400-404. doi:10.1016/j.jallcom.2009.04.117
[22] Y. Yang, J. Lan and X. C. Li, “Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Alumi- num Alloy,” Materials Science and Engineering: A, Vol. 380, No. 1-2, 2004, pp. 378-383. doi:10.1016/j.msea.2004.03.073
[23] B. H. Tian, P. Liu, K. X. Song, Y. Li, Y. Liu, F. Z. Ren and J. H. Su, “Mi-crostructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion- Strengthened Copper Base Composite,” Materials Science and Engineering: A, Vol. 435-436, 2006, pp. 705- 710. doi:10.1016/j.msea.2006.07.129
[24] R. J. Arsenault, In: R. K. Everett and R. J. Arsenasult Eds., “Metal Matrix Composites: Mechanisms and Properties,” Academic Press, San Diego, 1991, pp. 79-87.
[25] R. U. Vaidy and K. K. Chawla, “Thermal Expansion of Metal Matrix Composites,” Composites Science and Technology, Vol. 50, No. 1, 1994, pp. 13-22 doi:10.1016/0266-3538(94)90122-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.