[1]
|
Meunier, P., Aaron, J., Edouard, C. and Vignon, G. (1971) Osteoporosis and the Replacement of Cell Populations of the Marrow by Adipose Tissue. A Quantitative Study of 84 Iliac Bone Biopsies. Clinical Orthopaedics and Related Research, 80, 147-154. http://dx.doi.org/10.1097/00003086-197110000-00021
|
[2]
|
Gimble, J.M., Zvonic, S., Floyd, Z.E., Kassem, M. and Nuttall, M.E. (2006) Playing with Bone and Fat. Journal of Cellular Biochemistry, 98, 251-266. http://dx.doi.org/10.1002/jcb.20777
|
[3]
|
Ahima, R.S. and Flier, J.S. (2000) Adipose Tissue as an Endocrine Organ. Trends in Endocrinology and Metabolism, 11, 327-332. http://dx.doi.org/10.1016/S1043-2760(00)00301-5
|
[4]
|
Kershaw, E.E. and Flier, J.S. (2004) Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology and Metabolism, 89, 2548-2556. http://dx.doi.org/10.1210/jc.2004-0395
|
[5]
|
Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., et al. (2000) Leptin Inhibits Bone Formation through a Hypothalamic Relay: A Central Control of Bone Mass. Cell, 100, 197-207. http://dx.doi.org/10.1016/S0092-8674(00)81558-5
|
[6]
|
Karsenty, G. (2006) Convergence between Bone and Energy Homeostases: Leptin Regulation of Bone Mass. Cell Metabolism, 4, 341-348. http://dx.doi.org/10.1016/j.cmet.2006.10.008
|
[7]
|
Yamauchi, T. and Kadowaki, T. (2008) Physiological and Pathophysiological Roles of Adiponectin and Adiponectin Receptors in the Integrated Regulation of Metabolic and Cardiovascular Diseases. International Journal of Obesity, 32, S13-18. http://dx.doi.org/10.1038/ijo.2008.233
|
[8]
|
Kelesidis, I., Kelesidis, T. and Mantzoros, C.S. (2006) Adiponectin and Cancer: A Systematic Review. British Journal of Cancer, 94, 1221-1225. http://dx.doi.org/10.1038/sj.bjc.6603051
|
[9]
|
Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., et al. (2006) Regulation of Bone Formation by Adiponectin through Autocrine/Paracrine and Endocrine Pathways. Journal of Cellular Biochemistry, 99, 196-208. http://dx.doi.org/10.1002/jcb.20890
|
[10]
|
Berner, H.S., Lyngstadaas, S.P., Spahr, A., Monjo, M., Thommesen, L., Drevon, C.A., et al. (2004) Adiponectin and Its Receptors Are Expressed in Bone-Forming Cells. Bone, 35, 842-849. http://dx.doi.org/10.1016/j.bone.2004.06.008
|
[11]
|
Scherer, P.E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H.F. (1995) A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. The Journal of Biological Chemistry, 270, 26746-26749. http://dx.doi.org/10.1074/jbc.270.45.26746
|
[12]
|
Hu, E., Liang, P. and Spiegelman, B.M. (1996) AdipoQ is a Novel Adipose-Specific Gene Dysregulated in Obesity. The Journal of Biological Chemistry, 271, 10697-10703. http://dx.doi.org/10.1074/jbc.271.18.10697
|
[13]
|
Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y. and Matsubara, K. (1996) cDNA Cloning and Expression of a Novel Adipose Specific Collagen-Like Factor, apM1 (AdiPose Most abundant Gene Transcript 1). Biochemical and Biophysical Research Communications, 221, 286-289. http://dx.doi.org/10.1006/bbrc.1996.0587
|
[14]
|
Nakano, Y., Tobe, T., Choi-Miura, N., Mazda, T. and Tomita, M. (1996) Isolation and Characterization of GBP28, a Novel Gelatin-Binding Protein Purified from Human Plasma. Journal of Biochemistry, 120, 803-812. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021483
|
[15]
|
Wong, G.W., Wang, J., Hug, C., Tsao, T.S. and Lodish, H.F. (2004) A Family of Acrp30/Adiponectin Structural and Functional Paralogs. Proceedings of the National Academy of Sciences of the United States of America, 101, 10302-10307. http://dx.doi.org/10.1073/pnas.0403760101
|
[16]
|
Okamoto, Y., Kihara, S., Funahashi, T., Matsuzawa, Y. and Libby, P. (2006) Adiponectin: A Key Adipocytokine in Metabolic Syndrome. Clinical Science, 110, 267-278. http://dx.doi.org/10.1042/CS20050182
|
[17]
|
Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., et al. (2002) Disruption of Adiponectin Causes Insulin Resistance and Neointimal Formation. The Journal of Biological Chemistry, 277, 25863-25866. http://dx.doi.org/10.1074/jbc.C200251200
|
[18]
|
Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., et al. (2001) Proteolytic Cleavage Product of 30-kDa Adipocyte Complement-Related Protein Increases Fatty Acid Oxidation in Muscle and Causes Weight Loss in Mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 2005-2010. http://dx.doi.org/10.1073/pnas.98.4.2005
|
[19]
|
Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., et al. (2001) The Fat-Derived Hormone Adiponectin Reverses Insulin Resistance Associated with both Lipoatrophy and Obesity. Nature Medicine, 7, 941-946. http://dx.doi.org/10.1038/90984
|
[20]
|
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., et al. (2003) Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769. http://dx.doi.org/10.1038/nature01705
|
[21]
|
Ding, S.T., Liu, B.H. and Ko, Y.H. (2004) Cloning and Expression of Porcine Adiponectin and Adiponectin Receptor 1 and 2 Genes in Pigs. Journal of Animal Science, 82, 3162-3174.
|
[22]
|
Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., et al. (2007) Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nature Medicine, 13, 332-339. http://dx.doi.org/10.1038/nm1557
|
[23]
|
Yamauchi, T. and Kadowaki, T. (2013) Adiponectin Receptor as a Key Player in Healthy Longevity and Obesity-Related Diseases. Cell Metabolism, 17, 185-196. http://dx.doi.org/10.1016/j.cmet.2013.01.001
|
[24]
|
Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. http://dx.doi.org/10.1126/science.289.5484.1504
|
[25]
|
Owen, M. (1988) Marrow Stromal Stem Cells. Journal of Cell Science, 63-76. http://dx.doi.org/10.1242/jcs.1988.Supplement_10.5
|
[26]
|
Manolagas, S.C. and Jilka, R.L. (1995) Bone Marrow, Cytokines, and Bone Remodeling—Emerging Insights into the Pathophysiology of Osteoporosis. The New England Journal of Medicine, 332, 305-311. http://dx.doi.org/10.1056/NEJM199502023320506
|
[27]
|
Raisz, L.G. (1999) Physiology and Pathophysiology of Bone Remodeling. Clinical Chemistry, 45, 1353-1358.
|
[28]
|
Dempster, D.W., Cosman, F., Parisien, M., Shen, V. and Lindsay, R. (1993) Anabolic Actions of Parathyroid Hormone on bone. Endocrine Reviews, 14, 690-709.
|
[29]
|
Li, Y.C., Amling, M., Pirro, A.E., Priemel, M., Meuse, J., Baron, R., et al. (1998) Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice. Endocrinology, 139, 4391-4396.
|
[30]
|
Rosen, C.J. and Donahue, L.R. (1998) Insulin-Like Growth Factors and Bone: The Osteoporosis Connection Revisited. Experimental Biology and Medicine, 219, 1-7. http://dx.doi.org/10.3181/00379727-219-44310
|
[31]
|
Advani, S., LaFrancis, D., Bogdanovic, E., Taxel, P., Raisz, L.G. and Kream, B.E. (1997) Dexamethasone Suppresses in Vivo Levels of Bone Collagen Synthesis in Neonatal Mice. Bone, 20, 41-46. http://dx.doi.org/10.1016/S8756-3282(96)00314-6
|
[32]
|
Kawaguchi, H., Pilbeam, C.C. and Raisz, L.G. (1994) Anabolic Effects of 3,3’,5-Triiodothyronine and Triiodothyroacetic Acid in Cultured Neonatal Mouse Parietal Bones. Endocrinology, 135, 971-976.
|
[33]
|
Pacifici, R. (1998) Cytokines, Estrogen, and Postmenopausal Osteoporosis—The Second Decade. Endocrinology, 139, 2659-2661.
|
[34]
|
Takai, H., Kanematsu, M., Yano, K., Tsuda, E., Higashio, K., Ikeda, K., et al. (1998) Transforming Growth Factor-Beta Stimulates the Production of Osteoprotegerin/Osteoclastogenesis Inhibitory Factor by Bone Marrow Stromal Cells. The Journal of Biological Chemistry, 273, 27091-27096. http://dx.doi.org/10.1074/jbc.273.42.27091
|
[35]
|
Ramirez-Yanez, G.O., Hamlet, S., Jonarta, A., Seymour, G.J. and Symons, A.L. (2006) Prostaglandin E2 Enhances Transforming Growth Factor-Beta 1 and TGF-Beta Receptors Synthesis: An in Vivo and in Vitro Study. Prostaglandins, Leukotrienes and Essential Fatty Acids, 74, 183-192. http://dx.doi.org/10.1016/j.plefa.2006.01.003
|
[36]
|
Steeve, K.T., Marc, P., Sandrine, T., Dominique, H. and Yannick, F. (2004) IL-6, RANKL, TNF-Alpha/IL-1: Interrelations in Bone Resorption Pathophysiology. Cytokine and Growth Factor Reviews, 15, 49-60. http://dx.doi.org/10.1016/j.cytogfr.2003.10.005
|
[37]
|
Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., et al. (2002) Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Developmental Cell, 3, 889-901. http://dx.doi.org/10.1016/S1534-5807(02)00369-6
|
[38]
|
Nakashima, T., Hayashi, M. and Takayanagi, H. (2012) New Insights into Osteoclastogenic Signaling Mechanisms. Trends in Endocrinology and Metabolism, 23, 582-590. http://dx.doi.org/10.1016/j.tem.2012.05.005
|
[39]
|
Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., et al. (1998) Osteoprotegerin Ligand Is a Cytokine That Regulates Osteoclast Differentiation and Activation. Cell, 93, 165-176. http://dx.doi.org/10.1016/S0092-8674(00)81569-X
|
[40]
|
Bucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., et al. (1998) Osteoprotegerin-Deficient Mice Develop Early Onset Osteoporosis and Arterial Calcification. Genes and Development, 12, 1260-1268. http://dx.doi.org/10.1101/gad.12.9.1260
|
[41]
|
Chamberlain, G., Fox, J., Ashton, B. and Middleton, J. (2007) Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25, 2739-2749. http://dx.doi.org/10.1634/stemcells.2007-0197
|
[42]
|
Duque, G. (2008) Bone and Fat Connection in Aging Bone. Current Opinion in Rheumatology, 20, 429-434. http://dx.doi.org/10.1097/BOR.0b013e3283025e9c
|
[43]
|
Muruganandan, S., Roman, A.A. and Sinal, C.J. (2009) Adipocyte Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Cross Talk with the Osteoblastogenic Program. Cellular and Molecular Life Sciences, 66, 236-253. http://dx.doi.org/10.1007/s00018-008-8429-z
|
[44]
|
Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L., et al. (2000) Inhibition of Adipogenesis by Wnt Signaling. Science, 289, 950-953. http://dx.doi.org/10.1126/science.289.5481.950
|
[45]
|
Krishnan, V., Bryant, H.U. and Macdougald, O.A. (2006) Regulation of Bone Mass by Wnt Signaling. Journal of Clinical Investication, 116, 1202-1209. http://dx.doi.org/10.1172/JCI28551
|
[46]
|
Challa, T.D., Rais, Y. and Ornan, E.M. (2010) Effect of Adiponectin on ATDC5 Proliferation, Differentiation and Signaling Pathways. Molecular and Cellular Endocrinology, 323, 282-291. http://dx.doi.org/10.1016/j.mce.2010.03.025
|
[47]
|
Oshima, K., Nampei, A., Matsuda, M., Iwaki, M., Fukuhara, A., Hashimoto, J., et al. (2005) Adiponectin Increases Bone Mass by Suppressing Osteoclast and Activating Osteoblast. Biochemical and Biophysical Research Communications, 331, 520-526. http://dx.doi.org/10.1016/j.bbrc.2005.03.210
|
[48]
|
Lee, H.W., Kim, S.Y., Kim, A.Y., Lee, E.J., Choi, J.Y. and Kim, J.B. (2009) Adiponectin Stimulates Osteoblast Differentiation through Induction of COX2 in Mesenchymal Progenitor Cells. Stem Cells, 27, 2254-2262. http://dx.doi.org/10.1002/stem.144
|
[49]
|
Huang, C.Y., Lee, C.Y., Chen, M.Y., Tsai, H.C., Hsu, H.C. and Tang, C.H. (2010) Adiponectin Increases BMP-2 Expression in Osteoblasts via AdipoR Receptor Signaling Pathway. Journal of Cellular Physiology, 224, 475-483. http://dx.doi.org/10.1002/jcp.22145
|
[50]
|
Liu, L.F., Shen, W.J., Zhang, Z.H., Wang, L.J. and Kraemer, F.B. (2010) Adipocytes Decrease Runx2 Expression in Osteoblastic Cells: Roles of PPARgamma and Adiponectin. Journal of Cellular Physiology, 225, 837-845. http://dx.doi.org/10.1002/jcp.22291
|
[51]
|
Williams, G.A., Wang, Y., Callon, K.E., Watson, M., Lin, J.M., Lam, J.B., et al. (2009) In Vitro and in Vivo Effects of Adiponectin on Bone. Endocrinology, 150, 3603-3610. http://dx.doi.org/10.1210/en.2008-1639
|
[52]
|
Tu, Q., Zhang, J., Dong, L.Q., Saunders, E., Luo, E., Tang, J., et al. (2011) Adiponectin Inhibits Osteoclastogenesis and Bone Resorption via APPL1-Mediated Suppression of Akt1. The Journal of Biological Chemistry, 286, 12542-12553. http://dx.doi.org/10.1074/jbc.M110.152405
|
[53]
|
Jeyabalan, J., Shah, M., Viollet, B. and Chenu, C. (2012) AMP-Activated Protein Kinase Pathway and Bone Metabolism. Journal of Endocrinology, 212, 277-290. http://dx.doi.org/10.1530/JOE-11-0306
|
[54]
|
Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K. and Tobe, K. (2006) Adiponectin and Adiponectin Receptors in Insulin Resistance, Diabetes, and the Metabolic Syndrome. The Journal of Clinical Investigation, 116, 1784-1792. http://dx.doi.org/10.1172/JCI29126
|
[55]
|
Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., et al. (2002) Adiponectin Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase. Nature Medicine, 8, 1288-1295. http://dx.doi.org/10.1038/nm788
|
[56]
|
Tomas, E., Tsao, T.S., Saha, A.K., Murrey, H.E., Zhang, C.C., Itani, S.I., et al. (2002) Enhanced Muscle Fat Oxidation and Glucose Transport by ACRP30 Globular Domain: Acetyl-CoA Carboxylase Inhibition and AMP-Activated Protein Kinase Activation. Proceedings of the National Academy of Sciences of the United States of America, 99, 16309-16313. http://dx.doi.org/10.1073/pnas.222657499
|
[57]
|
Berg, A.H., Combs, T.P., Du, X., Brownlee, M. and Scherer, P.E. (2001) The Adipocyte-Secreted Protein Acrp30 Enhances Hepatic Insulin Action. Nature Medicine, 7, 947-953. http://dx.doi.org/10.1038/90992
|
[58]
|
Shah, M., Kola, B., Bataveljic, A., Arnett, T.R., Viollet, B., Saxon, L., et al. (2010) AMP-Activated Protein Kinase (AMPK) Activation Regulates in Vitro Bone Formation and Bone Mass. Bone, 47, 309-319. http://dx.doi.org/10.1016/j.bone.2010.04.596
|
[59]
|
Kim, E.K., Lim, S., Park, J.M., Seo, J.K., Kim, J.H., Kim, K.T., et al. (2012) Human Mesenchymal Stem Cell Differentiation to the Osteogenic or Adipogenic Lineage Is Regulated by AMP-Activated Protein Kinase. Journal of Cellular Physiology, 227, 1680-1687. http://dx.doi.org/10.1002/jcp.22892
|
[60]
|
Lee, Y.S., Kim, Y.S., Lee, S.Y., Kim, G.H., Kim, B.J., Lee, S.H., et al. (2010) AMP Kinase Acts as a Negative Regulator of RANKL in the Differentiation of Osteoclasts. Bone, 47, 926-937. http://dx.doi.org/10.1016/j.bone.2010.08.001
|
[61]
|
Yamaguchi, N., Kukita, T., Li, Y.J., Kamio, N., Fukumoto, S., Nonaka, K., et al. (2008) Adiponectin Inhibits Induction of TNF-Alpha/RANKL-Stimulated NFATc1 via the AMPK Signaling. FEBS Letters, 582, 451-456. http://dx.doi.org/10.1016/j.febslet.2007.12.037
|
[62]
|
Waki, H., Yamauchi, T., Kamon, J., Ito, Y., Uchida, S., Kita, S., et al. (2003) Impaired Multimerization of Human Adiponectin Mutants Associated with Diabetes. Molecular Structure and Multimer Formation of Adiponectin. The Journal of Biological Chemistry, 278, 40352-40363. http://dx.doi.org/10.1074/jbc.M300365200
|
[63]
|
Pajvani, U.B., Hawkins, M., Combs, T.P., Rajala, M.W., Doebber, T., Berger, J.P., et al. (2004) Complex Distribution, Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione-Mediated Improvement in Insulin Sensitivity. The Journal of Biological Chemistry, 279, 12152-12162. http://dx.doi.org/10.1074/jbc.M311113200
|
[64]
|
Amemiya, N., Otsubo, S., Iwasa, Y., Onuki, T. and Nitta, K. (2012) Association between High-Molecular-Weight Adiponectin and Bone Mineral Density in Hemodialysis Patients. Clinical and Experimental Nephrology, 17, 411-415. http://dx.doi.org/10.1007/s10157-012-0723-2
|
[65]
|
Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469. http://dx.doi.org/10.1016/j.cell.2007.05.047
|
[66]
|
Fulzele, K., Riddle, R.C., DiGirolamo, D.J., Cao, X., Wan, C. and Chen, D. (2010) Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell, 142, 309-319. http://dx.doi.org/10.1016/j.cell.2010.06.002
|
[67]
|
Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R.A., Teti, A., et al. (2010) Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 142, 296-308. http://dx.doi.org/10.1016/j.cell.2010.06.003
|
[68]
|
Hwang, Y.C., Jeong, I.K., Ahn, K.J. and Chung, H.Y. (2012) Circulating Osteocalcin Level Is Associated with Improved Glucose Tolerance, Insulin Secretion and Sensitivity Independent of the Plasma Adiponectin Level. Osteoporosis International, 23, 1337-1342. http://dx.doi.org/10.1007/s00198-011-1679-x
|
[69]
|
Hwang, Y.C., Jeong, I.K., Ahn, K.J. and Chung, H.Y. (2009) The Uncarboxylated Form of Osteocalcin Is Associated with Improved Glucose Tolerance and Enhanced Beta-Cell Function in Middle-Aged Male Subjects. Diabetes/Metabolism Research and Reviews, 25, 768-772.
|
[70]
|
Mao, X., Kikani, C.K., Riojas, R.A., Langlais, P., Wang, L., Ramos, F.J., et al. (2006) APPL1 Binds to Adiponectin Receptors and Mediates Adiponectin Signalling and Function. Nature Cell Biology, 8, 516-523. http://dx.doi.org/10.1038/ncb1404
|
[71]
|
Deepa, S.S. and Dong, L.Q. (2009) APPL1: Role in Adiponectin Signaling and Beyond. American Journal of Physiology, Endocrinology and Metabolism, 296, E22-E36. http://dx.doi.org/10.1152/ajpendo.90731.2008
|
[72]
|
Prior, J.C. (2007) FSH and Bone—Important Physiology or Not? Trends in Molecular Medicine, 13, 1-3. http://dx.doi.org/10.1016/j.molmed.2006.11.004
|
[73]
|
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y
|
[74]
|
Guo, L., Zhao, R.C. and Wu, Y. (2011) The Role of MicroRNAs in Self-Renewal and Differentiation of Mesenchymal Stem Cells. Experimental Hematology, 39, 608-616. http://dx.doi.org/10.1016/j.exphem.2011.01.011
|
[75]
|
Lian, J.B., Stein, G.S., van Wijnen, A.J., Stein, J.L., Hassan, M.Q., Gaur, T., et al. (2012) MicroRNA Control of Bone Formation and Homeostasis. Nature Reviews Endocrinology, 8, 212-227. http://dx.doi.org/10.1038/nrendo.2011.234
|
[76]
|
Turner, R.T., Maran, A., Lotinun, S., Hefferan, T., Evans, G.L., Zhang, M., et al. (2001) Animal Models for Osteoporosis. Reviews in Endocrine and Metabolic Disorders, 2, 117-127. http://dx.doi.org/10.1023/A:1010067326811
|
[77]
|
Pietschmann, P., Skalicky, M., Kneissel, M., Rauner, M., Hofbauer, G., Stupphann, D., et al. (2007) Bone Structure and Metabolism in a Rodent Model of Male Senile Osteoporosis. Experimental Gerontology, 42, 1099-1108. http://dx.doi.org/10.1016/j.exger.2007.08.008
|