[1]
|
Farrell, R.H. (1972) On the Best Obtainable Asymptotic Rates of Convergence in Estimation of a Density Function at a Point. The Annals of Mathematics and Statistics, 43, 170-180. http://dx.doi.org/10.1214/aoms/1177692711
|
[2]
|
Terrell, G.R. and Scott, D.W. (1980) On Improving Convergence Rates for Nonnegative Kernel Density Estimators. The Annals of Statistics, 8, 1160-1163. http://dx.doi.org/10.1214/aos/1176345153
|
[3]
|
Hall, P. and Marron, J.S. (1988) Choice of Kernel Order in Density Estimation. The Annals of Statistics, 16, 161-173.
http://dx.doi.org/10.1214/aos/1176350697
|
[4]
|
Abramson, I.S. (1982) On Bandwidth Variation in Kernel Estimates—A Square Root Law. The Annals of Statistics, 10, 1217-1223. http://dx.doi.org/10.1214/aos/1176345986
|
[5]
|
Samiuddin, M. and El-Sayyad, G.M. (1990) On Nonparametric Kernel Density Estimates. Biometrica, 77, 865-874.
http://dx.doi.org/10.1093/biomet/77.4.865
|
[6]
|
El-Sayyad, G.M., Samiuddin, M. and Abdel-Ghaly, A.A. (1992) A New Kernel Density Estimate. Journal of Nonparametric Statistics, 3, 1-11. http://dx.doi.org/10.1080/10485259308832568
|
[7]
|
Cheng, M.Y., Choi, E., Fan, J. and Hall, P. (2000) Skewing Methods for Two-Parameter Locally Parametric Density Estimation. Bernoulli, 6, 169-182. http://dx.doi.org/10.2307/3318637
|
[8]
|
Marron, J.S. and Ruppert, D. (1992) Transformations to Reduce Boundary Bias in Kernel Density Estimation. Journal of the Royal Statistical Society: Series B, 4, 653-671.
|
[9]
|
Ruppert, D. and Cline, D.B.H. (1994) Bias Reduction in Kernel Density Estimation by Smoothed Empirical Transformations. The Annals of Statistics, 22, 185-210. http://dx.doi.org/10.1214/aos/1176325365
|
[10]
|
Jones, M.C., Linton, O. and Nielsen, J.P. (1995) A Simple Bias Reduction Method for Density Estimation. Biometrica, 82, 327-338. http://dx.doi.org/10.1093/biomet/82.2.327
|
[11]
|
Kim, C., Kim, W. and Park, B.U. (2003) Skewing and Generalized Jackknifing in Kernel Density Estimation. Communications in Statistics: Theory and Methods, 32, 2153-2162. http://dx.doi.org/10.1081/sta-120024473
|
[12]
|
Mynbaev, K. and Martins-Filho, C. (2010) Bias Reduction in Kernel Density Estimation via Lipschitz Condition. Journal of Nonparametric Statistics, 22, 219-235. http://dx.doi.org/10.1080/10485250903266058
|
[13]
|
Srihera, R. and Stute, W. (2011) Kernel Adjusted Density Estimation. Statistics and Probability Letters, 81, 571-579.
http://dx.doi.org/10.1016/j.spl.2011.01.013
|
[14]
|
Cheng, M.Y., Peng, L. and Wu, S.H. (2007) Reducing Variance in Univariate Smoothing. The Annals of Statistics, 35, 522-542. http://dx.doi.org/10.1214/009053606000001398
|
[15]
|
Kim, J. and Kim, C. (2013) Reducing the Mean Squared Error in Kernel Density Estimation. Journal of the Korean Statistical Society, 42, 387-397. http://dx.doi.org/10.1016/j.jkss.2012.12.003
|
[16]
|
Rosenblatt, M. (1956) Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, 27, 832-837. http://dx.doi.org/10.1214/aoms/1177728190
|
[17]
|
Parzen, E. (1962) On Estimation of a Probability Density Function and the Mode. The Annals of Mathematical Statistics, 33, 1065-1076. http://dx.doi.org/10.1214/aoms/1177704472
|
[18]
|
Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
http://dx.doi.org/10.1007/978-1-4899-3324-9
|
[19]
|
Wand, M.P. and Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall, London.
http://dx.doi.org/10.1007/978-1-4899-4493-1
|