[1]
|
IEEE 802.15 WPAN Task Group 4 (TG4), “IEEE 802.15.4-2006 standard: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),” 2006. http://www.ieee802.org/15/pub/TG4.html
|
[2]
|
Zigbee Alliance Homepage. http://www.zigbee.org
|
[3]
|
C. Chaabane, A. Pegatoquet, M. Auguin and M. B. Jemaa, “Energy Optimization for Mobile Nodes in a Cluster Tree IEEE 802.15.4/ZigBee,” Computing, Communications and Applications Conference, Hong Kong, 11-13 January 2012, pp. 328-333.
|
[4]
|
L. Chen, T. Sun and N. Liang, “An Evaluation Study of Mobility Support in ZigBee Networks,” Journal of Signal Processing Systems, Vol. 59, No. 1, 2010, pp. 111-122. http://dx.doi.org/10.1007/s11265-008-0271-x
|
[5]
|
C. Chaabane, A. Pegatoquet, M. Auguin and M. Ben-Jemaa, “An Efficient Mobility Management Approach for IEEE 802.15.4/ZigBee Nodes,” High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), Liverpool, 25-27 June 2012, pp. 897-902.
|
[6]
|
C. Chaabane, A. Pegatoquet, M. Auguin and M. Ben-Jemaa, “Mobility Management Approach for IEEE 802.15.4/ ZigBee Nodes in a Noisy Environment,” Proceedings of 26th International Conference on Architecture of Computing Systems (ARCS), Prague, 19-22 February 2013, pp. 1-5.
|
[7]
|
S. Biaz and S. E. Wu, “Rate Adaptation Algorithms for IEEE 802.11 Networks: A Survey and Comparison,” IEEE Symposium on Computers and Communications, Marrakech, 6-9 July 2008, pp. 130-136.
|
[8]
|
CC2500 Single Chip Low Cost Low Power RF Transceiver Datasheet (Rev. C), 19 May 2009, Texas Instruments. http://www.ti.com/product/cc2500
|
[9]
|
S. Lanzisera, A. M. Mehta and K. S. J. Pister, “Reducing Average Power in Wireless Sensor Networks through Data Rate Adaptation,” Proceedings of the 2009 IEEE International Conference on Communications, Dresden, 14-18 June 2009, IEEE Press, Piscataway, pp. 480-485.
|
[10]
|
F. Martelli, R. Verdone and C. Buratti, “Link Adaptation in Wireless Body Area Networks,” Proceedings of IEEE VTC Spring, Budapest, 15-18 May 2011, pp. 1-5.
|
[11]
|
M. Lacage, M. H. Manshaei and T. Turletti, “IEEE 802.11 Rate Adaptation: A Practical Approach,” Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ‘04), Venice, 4-6 October 2004, ACM, New York, pp. 126-134.
|
[12]
|
G. Holland, N. Vaidya and P. Bahl, “A Rate Adaptive mac Protocol for Multi-Hop Wireless Networks,” Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom ‘01), Rome, 16-21 July 2001, ACM, New York, pp. 236-251.
|
[13]
|
M. Vutukuru, H. Balakrishnan and K. Jamieson, “Cross-Layer Wireless Bit Rate Adaptation,” Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ‘09), Barcelona, 17-21 August 2009, ACM, New York, pp. 3-14.
|
[14]
|
G. Box, and M. Muller, “A Note on the Generation of Random Normal Deviates,” Annals of Mathematical Statistics, Vol. 29, No. 2, 1958, pp. 610-611. http://dx.doi.org/10.1214/aoms/1177706645
|
[15]
|
“Ns-2Simulator,” Version ns-2.34, 2009. http://nsnam.isi.edu/nsnam/index.php/mainpage
|