Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts
Yiming Weng, Xia Guo, Voon Joe Chong, Leah Howard, Richard L. Gregory, Dong Xie
DOI: 10.4236/jbise.2011.43021   PDF    HTML     5,852 Downloads   12,012 Views   Citations


The novel quaternary ammonium bromide (QAB)-containing oligomers were synthesized and applied for developing an antibacterial resin composite. Compressive strength (CS) and S. mutans (an oral bacteria strain) viability were used to evaluate the mechanical strength and antibacterial activity of the formed composites. All the QAB-modified resin composites showed significant antibacterial activity and mechanical strength reduction. Increasing chain length and loading significantly enhanced the antibacterial activity but dramatically reduced the CS as well. The 30-day aging study showed that the incorporation of the QAB accelerated the degradation of the composite, suggesting that the QAB may not be well suitable for development of antibacterial dental resin composites or at least the QAB loading should be well controlled, unlike its use in dental glass-ionomer cements. The work in this study is beneficial and valuable to those who are interested in studying antibacterial dental resin composites.

Share and Cite:

Weng, Y. , Guo, X. , Chong, V. , Howard, L. , Gregory, R. and Xie, D. (2011) Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. Journal of Biomedical Science and Engineering, 4, 147-157. doi: 10.4236/jbise.2011.43021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mjor, I.A., Dahl, J.E. and Moorhead, J.E. (2002) Place- ment and replacement of restorations in primary teeth. Acta Odontologica Scandinavica, 60, 25-28. doi:10.1080/000163502753471961
[2] Forss, H. and Widstrom, E. (2004) Reasons for restora- tive therapy and longevity of restorations in adults. Acta Odontologica Scandinavica, 62, 82-86. doi:10.1080/00016350310008733
[3] Manhart, J., Godoy, F.G. and Hickel, R. (2002) Direct posterior restorations: clinical results and new develop- ments. Dental Clinics of North America, 46, 303-339. doi:10.1016/S0011-8532(01)00010-6
[4] Deligeorgi, V., Mjor, I.A. and Wilson, N.H. (2001) An overview of reasons for the placement and replacement of restorations. Primary Dental Care: Journal of the Fac- ulty of General Dental Practitioners, 8, 5-11.
[5] Wiegand, A., Buchalla, W. and Attin, T. (2007) Review on fluoride-releasing restorative materials—Fluoride re- lease and uptake characteristics, antibacterial activity and influence on caries formation. Dental Materials, 23, 343-362. doi:10.1016/
[6] Osinaga, P.W., Grande, R.H., Ballester, R.Y., Simionato, M. R., Rodrigues, C. R. D. and Muench, A. (2003) Zinc sulfate addition to glass-ionomer-based cements: Influ- ence on physical and antibacterial properties, zinc and fluoride release. Dental Materials, 19, 212-217. doi:10.1016/S0109-5641(02)00032-5
[7] Takahashi, Y., Imazato, S., Kaneshiro, A. V., Ebisu, S., Frencken, J. E. and Tay, F. R. (2006) Antibacterial effects and physical properties of glass-ionomer cements con- taining chlorhexidine for the ART approach. Dental Ma- terials, 22, 647-652.
[8] Yamamoto, K., Ohashi, S., Aono, M., Kokybu, T., Yamada, I. and Yamauchi, J. (1996) Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dental Materials, 12, 227-229. doi:10.1016/S0109-5641(96)80027-3
[9] Syafiuddin, T., Hisamitsu, H., Toko, T., Igarashi, T., Goto, N., Fujishima, A. and Miyazaki, T. (1997) In vitro inhibi- tion of caries around a resin composite restoration con- taining antibacterial filler. Biomaterials, 18, 1051- 1057. doi:10.1016/S0142-9612(97)88072-6
[10] Gottenbos, B., Mei, H. C., Klatter, F., Nieuwenhuis, P. and Busscher, H. J. (2002) In vitro and in vivo antimicro- bial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 23, 1417-1423. doi:10.1016/S0142-9612(01)00263-0
[11] Thebault, P., Givenchy, E. T., Levy, R., Vandenberghe, Y., Guittard, F. and Geribaldi, S. (2009) Preparation and an- timicrobial behavior of quaternary ammonium thiol de- rivatives able to be grafted on metal surfaces. European Journal of Medicinal Chemistry, 44, 717-724. doi:10.1016/j.ejmech.2008.05.007
[12] Imazato, S., Russell, R. R. and McCabe, J. F. (1995) An- tibacterial activity of MDPB polymer incorporated in dental resin. Journal of Dentistry, 23, 177-181. doi:10.1016/0300-5712(95)93576-N
[13] Murata, H., Koepsel, R. R., Matyjaszewski, K. and Rus- sell, A. J., (2007) Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacte- rial cells. Biomaterials, 28, 4870-4879. doi:10.1016/j.biomaterials.2007.06.012
[14] Lu, G., Wu, D. and Fu, R. (2007) Studies on the synthesis and antibacterial activities of polymeric quaternary am- monium salts from dimethylaminoethyl methacrylate. Reactive and Functional Polymers, 67, 355-366. doi:10.1016/j.reactfunctpolym.2007.01.008
[15] Lee, S. B., Koepsel, R. R., Morley, S. W., Matyjaszewski, K., Sun, Y. and Russell, A. J. (2004) Permanent, nonleach- ing antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules, 5, 877-882. doi:10.1021/bm034352k
[16] Li, F., Chai, Z. G., Sun, M. N., Wang, F., Ma, S., Zhang, L., Fang, M. and Chen, J. H. (2009) Anti-biofilm effect of dental adhesive with cationic monomer. Journal of Dental Research, 88, 372-376. doi:10.1177/0022034509334499
[17] Li, F., Chen, J., Chai, Z., Zhang, L., Xiao, Y., Fang, M. and Ma, S. (2009) Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. Journal of Dentistry, 37, 289-296. doi:10.1016/j.jdent.2008.12.004
[18] Beyth, N., Farber, I. Y. Y., Bahir, R., Domb, A. J. and Weiss, E. I. (2006) Antibacterial activity of dental com- posites containing quaternary ammonium polyethylene- imine nanoparticles against Streptococcus mutans. Bio- materials, 27, 3995-4002. doi:10.1016/j.biomaterials.2006.03.003
[19] Beyth, N., Yudovin-Farberb, I., Perez-Davidia, M., Domb, A. J. and Weiss, E. I. (2010) Polyethyleneimine nanopar- ticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Science, 107, 22038-22043. doi:10.1073/pnas.1010341107
[20] Xie, D., Chung, I-D., Wang, G. and Mays, J. (2006) Syn- thesis and evaluation of novel bifunctional oligomerbased composites for dental applications. Journal of Biomate- rials Applications, 20, 221-236.
[21] Xie, D., Chung, I-D., Wang, G., Feng, D. and Mays, J. (2004) Synthesis, formulation and evaluation of novel zinc-calcium phosphate-based adhesive resin composite cement. European Polymer Journal, 40, 1723-1731. doi:10.1016/j.eurpolymj.2004.03.005
[22] Wei, G. X., Campagna, A. N. and Bobek, L. A. (2007) Factors affecting antimicrobial activity of muc7 12-mer, a human salivary mucin-derived peptide. Annals of Clini- cal Microbiology and Antimicrobials, 6, 1-10.
[23] Kim, Y., Farrah, S. and Baney R.H. (2007) Membrane damage of bacteria by silanols treatment. Electronic Journal of Biotechnology, 10, 252-259. doi:10.2225/vol10-issue2-fulltext-7
[24] Shackelford, J. F. (2009) Introduction to Materials Sci- ence for Engineers. 7th Edition, Pearson Education, Inc., Upper Saddle River.
[25] Wang, G., Weng, Y., Chu, D., Xie, D. and Chen, R. (2009) Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. Journal of Membrane Science, 326, 4-8. doi:10.1016/j.memsci.2008.09.037
[26] Dermaut, W., van den Kerkhof, T., van der Veken, B. J., Mertens, R. and Geise, H. J. (2000) Cold stretching of PPV with water as a plasticizer. Macromolecules, 33, 5634-5637. doi:10.1021/ma992062j
[27] Lio, K., Minoura, N. and Nagura, M. (1995) Swelling characteristics of a blend hydrogel made of poly (allyl- biguanido-co-allylamine) and poly(vinyl alcohol). Poly- mer, 36 (13), 2579-2583. doi:10.1016/0032-3861(95)91204-K
[28] Drummond, J. L. (2008) Degradation, Fatigue, and Fail- ure of Resin Dental Composite Materials. Journal of Den- tal Research, 87, 710-719. doi:10.1177/154405910808700802
[29] Weng, Y., Guo, X., Gregory, R. L. and Xie, D. (2010). A novel antibacterial glass-ionomer cement. European Jour- nal of Oral Science, 118, 531-534.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.