Nutrient Analysis Critical Control Point (NACCP): Hazelnut as a Prototype of Nutrigenomic Study
Laura Di Renzo, Alberto Carraro, Daniela Minella, Roberto Botta, Cecilia Contessa, Chiara Sartor, Anna Maria Iacopino, Antonino De Lorenzo
Department of Agricultural Sciences, University of Reggio Calabria “Mediterranea”, Reggio Calabria, Italy.
Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
Section of Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Roma, Italy.
Section of Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Roma, Italy;I.N.DI.M. National Institute for Mediterranean Diet and Nutrigenomics, Amantea, Italy..
DOI: 10.4236/fns.2014.51011   PDF    HTML     4,206 Downloads   6,393 Views   Citations


The aim of this study is to apply the Nutrient Analysis Critical Control Point (NACCP) process to ensure that the highest nutrient levels in food can determine a beneficial effect on the health of the consumer. The NACCP process involves a sequence of analysis and controls that depart from raw material production to the evaluation of the effect of nutrition on health. It is articulated through the following points: 1) identification of nutrient level in the food; 2) identification of critical control points (environmental, genetic data, chemical and physical data, production technology, distribution and administration); 3) establishing critical limits that can impoverish and damage the nutrient; 4) establishing measures to monitor; 5) establishing corrective actions. We selected as biomarkers the total phenolic content (TPC) and total antioxidant capacity (TAC) of a genotyped Italian hazelnut cultivars (Corylus e avellana L.). We performed a clinical study evaluating: a) nutritional status; b) clinical-biochemical parameters; c) low density lipoprotein oxidation (LDL-ox); d) the expression level changes of oxidative stress pathway genes in the blood cell at baseline and after 40 g/die of hazelnut consumption. In this study, we found a significant lowering (p ≤ 0.005) of LDL oxidized proteins, in association with the consumption of 40 g/d of hazelnuts. Also, we found a significant variation (p ≤ 0.005) of gene expression of antioxidant and pro-oxidant genes, between the intake of dietary with and without hazelnuts. This results support the hypothesis that the NACCP process could be applied to obtain significant benefits in terms of primary prevention and for contributing to the amelioration of food management at the consumer level.

Share and Cite:

Renzo, L. , Carraro, A. , Minella, D. , Botta, R. , Contessa, C. , Sartor, C. , Iacopino, A. and Lorenzo, A. (2014) Nutrient Analysis Critical Control Point (NACCP): Hazelnut as a Prototype of Nutrigenomic Study. Food and Nutrition Sciences, 5, 79-88. doi: 10.4236/fns.2014.51011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Lakshmana, T. N. K. Suriya Prakash, C. Dinesh Kumar, S. Suresh Kumar and T. Ragavendran, “Nutraceuticals: A Review,” Elixir Pharmacy, Vol. 46, 2012, pp. 8372-8377.
[2] A. Demirbas, “Phenolics from Hazelnut Kernels by Supercritical Methanol Extraction,” Energy Sources Part A, Vol. 29, No. 9, 2007, pp. 791-797.
[3] I. Oliveira, A. Sousa, J. Morais, I. C. F. R. Ferreira, A. Bento, L. Estevinho and J. A. Pereira, “Chemical Composition, and Antioxidant and Antimicrobial Activities of Three Hazelnut (Corylusavellana L.) Cultivars,” Food and Chemical Toxicology, Vol. 46, No. 5, 2008, pp. 1801-1807.
[4] M. L. Colombo, A. Manzo, S. Dalfà, L. Pistelli, L. Di Renzo, “La Filiera Delle Piante Officinali. Piano di Settore Piante Officinali. Ministero Politiche Agrarie Alimentari e Forestali,” The Supply Chain of Medicinal Plants, Ministry of Agriculture, Food and Forestry, UniversItalia, Roma, 2013.
[5] S. Pritam Sukhija and D. L. Palmquist, “Rapid Method for Determination of Total Fatty Acid Content and Composition of Feedstuffs and Feces,” Journal of Agriculture and Food Chemistry, Vol. 36, No. 6, 1988, pp. 1202-1206.
[6] Z. M. Rittersma, “Recent Achievements in Miniaturised Humidity Sensors—A Review of Transduction Techniques,” Sensors and Actuators A: Physical, Vol. 96, No. 2-3, 2002, pp. 196-210.
[7] K. Slinkard and V. L. Singleton, “Total Phenol Analyses: Automation and Comparison with Manual Methods,” American Journal of Enology and Viticulture, Vol. 28, No. 1, 1977, pp. 49-55.
[8] I. F. F. Benzie and J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay,” Analytical Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76.
[9] N. Pellegrini, M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi and F. Brighenti, “Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays,” Journal of Nutrition, Vol. 133, No. 9, 2003, pp. 28122819.
[10] J. J. Doyle and J. L. Doyle, “A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue,” Phytochemical Bulletin, Vol. 19, No. 1, 1987, pp. 11-15.
[11] P. Boccacci, A. Akkak, N. V. Bassil, S. A. Mehlenbacher and R. Botta, “Characterization and Evaluation of Microsatellite Loci in European Hazelnut (Corylusavellana L.) and Their Transferability to Other Corylus Species,” Molecular Ecology Notes, Vol. 5, No. 4, 2005, pp. 934937.
[12] N. V. Bassil, R. Botta and S. A. Mehlenbacher, “Microsatellite Markers in Hazelnut: Isolation, Characterization, and Cross-Species Amplification,” Journal of the American Society for Horticultural Science, Vol. 130, No. 4, 2005, pp. 543-549.
[13] P. Boccacci, R. Botta and M. Rovira, “Genetic Diversity of Hazelnut (Corylusavellana L.) Germplasm in Northeastern Spain,” Hort Science, Vol. 43, No. 3, 2008, pp. 667-672.
[14] T. G. Lohman, A. F. Roche and R. Martorell, “Anthropometric Standardization Reference Manual,” Human Kinetics, Champaign, 1998.
[15] L. Di Renzo, V. Del Gobbo, M. Bigioni, et al., “Body Composition Analyses in Normal Weight Obese Women,” European Review for Medical and Pharmacological Sciences, Vol. 10, No. 4, 2006, pp. 191-196.
[16] A. De Lorenzo, A. Andreoli, J. Matthie and P. Withers, “Predicting Body Cell Mass with Bioimpedance by Using Theoretical Methods: A Technological Review,” Journal of Applied Physiology, Vol. 82, No. 5, 1997, pp. 15421558.
[17] A. De Lorenzo, A. Noce, M. Bigioni, V. Calabrese, D. G. Della Rocca, N. Di Daniele, C. Tozzo and L. Di Renzo, “The Effects of Italian Mediterranean Organic Diet (IMOD) on Health Status,” Current Pharmaceutical Design, Vol. 16, No. 7, 2010, pp. 814-824.
[18] N. Di Daniele, L. Petramala, L. Di Renzo, F. Sarlo, D. G. Della Rocca, M. Rizzo, V. Fondacaro, L. Iacopino, C. J. Pepine and A. De Lorenzo, “Body Composition Changes and Cardiometabolic Benefits of a Balanced Italian Mediterranean Diet in Obese Patients with Metabolic Syndrome,” Acta Diabetologica, Vol. 50, No. 3, 2013, pp. 409-416.
[19] K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCt Method,” Methods, Vol. 25, No. 4, 2001, pp. 402-408.
[20] D. Ghirardello, C. Contessa, N. Valentini, G. Zeppa, L. Rolle, V. Gerbi and R. Botta, “Effect of Storage Conditions on Chemical and Physical Characteristics of Hazelnut (Corylusavellana L.),” Postharvest Biology and Technology, Vol. 81, 2013, pp. 37-43.
[21] WHO, “Report Global Status Report on Non-Communicable Disease,” WHO, Geneva, 2010
[22] A. K. Kant, “Dietary Patterns: Biomarkers and Chronic Disease Risk,” Applied Physiology, Nutrition, and Metabolism, Vol. 35, No. 2, 2010, pp. 199-206.
[23] C. Alasalvar, F. Shaidi and K. R. Cadwaller, “Comparison of Natural and Roasted Turkish Tombul Hazelnut (Corylusavellana L.) Volatiles and Flavor by DHA/GC/ MS and Descriptive Sensory Analysis,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 17, 2003, pp. 5067-5072.
[24] C. Contessa, M. G. Mellano, G. L. Beccaro, A. Giusiano and R. Botta, “Total Antioxidant Capacity and Total Phenolic and Anthocyanin Contents in Fruit Species Grown in Northwest Italy,” Scientia Horticulturae, Vol. 160, 2013, pp. 351-357.
[25] R. Blomhoff, M. H. Carlsen, L. F. Andersen and D. R. Jacobs, “Health Benefits of Nuts: Potential Role of Antioxidant,” British Journal of Nutrition, Vol. 96, No. 2, 2006, pp. 52-60.
[26] C. Alasalvar, F. Shahidi, C. M. Liyanapathirana and T. Ohshima, “Turkish Tombul Hazelnut (Corylusavellana L.). 1. Compositional Characteristics,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 13, 2003, pp. 3790-3796.
[27] S. M. Mercanligil, P. Arslan, C. Alasalvar, E. Okut, E. Akgul and A. Pinar, “Effects of Hazelnut-Enriched Diet on Plasma Cholesterol and Lipoprotein Profiles in Hypercholesterolemic Adult Men,” European Journal of Clinical Nutrition, Vol. 61, No. 2, 2006, pp. 1-9.
[28] R. Ross. “Atherosclerosis-An Inflammatory Disease,” The New England Journal of Medicine, Vol. 340, No. 2, 1999, pp. 115-126.
[29] G. S. Hotamisligil, “Inflammation and Metabolic Disorder,” Nature, Vol. 444, No. 7121, 2006, pp. 860-867.
[30] F. B. Yücesan, A. Orem, V. B. Kural, C. Orem and I. Turam, “Hazelnut Consumption Decrease the Susceptibility of LDL to Oxidation, Plasma Oxidazed LDL Level and Increase the Ratio of Large/Small LDL in Normolipidemic Healthy Subjects,” Anadolu Kardiyoloji Dergisi, Vol. 10, No. 1, 2010, pp. 28-35.
[31] V. D. De Mello, M. Kolehmainen, U. Schwab, U. Mager, D. E. Laaksonen, U. L. Pulkkinen, et al., “Effect of Weight Loss on Cytokine Messenger RNA Expression in Peripheral Blood Mononuclear Cells of Obese Subjects with the Metabolic Syndrome,” Metabolism, Vol. 57, No. 2, 2008, pp. 192-199.
[32] C. Berndt, C. H. Lillig and A. Holmgren, “Thiol-Based Mechanisms of the Thioredoxin and Glutaredoxin Systems: Implications for Diseases in the Cardiovascular System,” American Journal of Physiology—Heart and Circulatory Physiology, Vol. 292, No. 3, 2007, pp. H1227H1236.
[33] M. L. Mansego, J. Redon, S. Martinez-Hervas, J. T. Real, F. Martinez, S. Blesa, et al., “Different Impacts of Cardiovascular Risk Factors on Oxidative Stress,” International Journal of Molecular Sciences, Vol. 12, No. 9, 2011, pp. 6146-6163.
[34] X. Wu, J. Kang, C. Xie, R. Burris, M. E. Ferguson, T. M. Badger and S. Nagarajan, “Dietary Blueberries Attenuate Atherosclerosis in Apolipoprotein E-Deficient Mice by Upregulating Antioxidant Enzyme Expression,” Journal of Nutrition, Vol. 140, No. 9, 2010, pp. 1628-1632.
[35] S. Wassmann, K. Wassmann and G. Nickenig, “Modulation of Oxidant and Antioxidant Enzyme Expression and Function in Vascular Cells,” Hypertension, Vol. 44, No. 4, 2004, pp. 381-386.
[36] Y. L. Lin, C. C. Liu, J. I. Chuang, H. Y. Lei, T. M. Yeh, Y. S. Lin, Y. H. Huang and H. S. Liu, “Involvement of Oxidative Stress, NF-IL-6, and RANTES Expression in Dengue-2-Virus-Infected Human Liver Cells,” Virology, Vol. 276, No. 1, 2000, pp. 114-126.
[37] Y. Zheng, V. Le, Z. Cheng, S. Xie, H. Li, J. T. Jianwen Liu, “Development of Rapid and Highly Sensitive HSPA1A Promoter-Driven Luciferase Reporter System for Assessing Oxidative Stress Associated with LowDose Photodynamic Therapy,” Cell stress and Chaperones, Vol. 18, No. 2, 2013, pp. 203-213.
[38] H. Kawamata and G. Manfredi, “Import, Maturation, and Function of SOD1 and Its Copper Chaperone CCS in the Mitochondrial Intermembrane Space,” Antioxidants & Redox Signaling, Vol. 13, No. 9, 2010, pp. 1375-1384.
[39] T. H. Pohlman and J. M. Harlan, “Adaptive Responses of the Endothelium to Stress,” Journal of Surgical Research, Vol. 89, No. 1, 2000, pp. 85-119.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.