Diversity of Filamentous Fungi of Area from Brazilian Caatinga and High-Level Tannase Production Using Mango (Mangifera indica L.) and Surinam Cherry (Eugenia uniflora L.) Leaves under SSF


Tannase is a biotechnologically important enzyme that can be produced during fungal fermentation of organic matter. The Caatinga is an exclusive Brazilian ecosystem that has been largely unexplored by science, particularly its filamentous fungal diversity. This study evaluated the diversity of filamentous fungi in the Caatinga soils of Pernambuco, Brazil, and their potential for tannase production by solid-state fermentation (SSF) of mango (Mangifera indica L.) and Surinam cherry (Eugenia uniflora L.) leaves. A total of 4711 isolates were obtained, 2090 during the rainy seasonand 2621 during the dry season. The isolates belonged to 18 genera and 66 species, with Aspergillus and Penicillium having the highest species richness. The dry season had a higher diversity index. Aspergillus was the dominant genus, and A. flavus, A. sclerotiorum, and A. ochraceus the most abundant species. A representative of each species was tested for tannase production using dried mango and Surinam cherry leaves as substrates; the leaves contained 14.28 and 7.0 g/L tannin, respectively. Most fungal species produced tannase, but the highest yields were obtained when mango leaves were used as substrate for Penicillium restrictum (accession URM 6044), Aspergillus flavofurcatus (URM 6142), and A. stromatoides (URM 6609), which produced 104.16, 87.51, and 81.83 U/mL tannase, respectively. These yields exceeded previously published reports. Filamentous fungi from Caatinga soils have great potential for producing tannase by SSF, and low-cost mango leaves make excellent substrate.

Share and Cite:

R. Cruz, J. Lima, J. Fonseca, M. Fernandes, D. Lima, G. Duda, K. Moreira and C. Motta, "Diversity of Filamentous Fungi of Area from Brazilian Caatinga and High-Level Tannase Production Using Mango (Mangifera indica L.) and Surinam Cherry (Eugenia uniflora L.) Leaves under SSF," Advances in Microbiology, Vol. 3 No. 8A, 2013, pp. 52-60. doi: 10.4236/aim.2013.38A009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. R. Leal, J. M. C. Silva, M. Tabarelli and T. E. Lacher Jr., “Mudando o Curso da Conservacão da Biodiversidade na Caatinga do Nordeste do Brasil,” Megadiversidade, Vol. 1, No. 1, 2005, pp. 139-146.
[2] J. J. A. Alves, M. A. Araújo and S. S. Nascimento, “Degradação da Caatinga: Uma Investigação Ecogeográfica,” Caminhos de Geografia, Vol. 9, 2009, pp. 143-155.
[3] L. Geise, R. Paresque, S. Harley, L. T. Shirai, D. Astúa and G. Marroig, “Non-Volantmammals, Parque Nacional do Catimbau, Vale do Catimbau, Buíque, State of Pernambuco, Brazil, with Karyologic Data,” Check List, Vol. 6, No. 1, 2010, pp. 180-186.
[4] M. A. Q. Cavalcanti, L. G. Oliveira, M. J. S. Fernandes and D. M. Lima, “Fungos Filamentosos Isolados do Solo em Municípios na Região Xingó, Brasil,” Acta Botanica Brasilica, Vol. 20, No. 4, 2006, pp. 831-837.
[5] P. Bridge and B. Spooner, “Soilfungi: Diversity and Detection,” Plant Soil, Vol. 232, No. 1-2, 2001, pp. 147-154.
[6] P. Puangsombat, U. Sangwanit and D. Marod, “Diversity of Soil Fungi in Different Land Use Types in Tha KumHuai Raeng Forest Reserve, Trat Province,” Natural Sciences, Vol. 44, 2010, pp. 1162-1175.
[7] M. K. Selwal and K. K. Selwal, “High-Level Tannase Production by Penicillium atramentosum KM Using Agro Residues under Submerged Fermentation,” Annals of Microbiology,” Vol. 62, No. 1, 2012, pp. 139-148.
[8] A. M. Costa, W. X. Ribeiro, E. Kato, A. R. G. Monteiro and R. M. Peralta, “Production of Tannase by Aspergillus tamarii in Submerged Cultures,” Brazilian Archives of Biology and Technology, Vol. 51, No. 2, 2008, pp. 399-404.
[9] A. B. El-tanash, A. A. Sherief and A. Nour, “Gallic Acid Production by Tannase of Aspergillus awamori Using Response Surface Methodology,” Innovative Romanian Food Biotechnology, Vol. 10, 2012, pp. 9-17.
[10] P. D. Belur and G. Mugeraya, “Microbial Production of Tannase: State of the Art,” Research Journal of Microbiology, Vol. 6, 2011, pp. 25-40.
[11] G. A. S. Pinto, E. S. Brito, A. M. R. Andrade, S. L. P. Fraga and R. B. Teixeira, “Fermentação em Estado Sólido: Uma Alternativa para o Aproveitamento e Valorização de Resíduos Agroindustriais Tropicais,” EMBRAPA Comunicado Técnico Online, Vol. 102, 2005, pp. 1-5.
[12] R. Kumar, J. Sharma and R. Singh, “Production of Tannase from Aspergillus ruber under Solid-State Fermentation Using Jamun (Syzygium cumini) Leaves,” Microbiology Research, Vol. 162, No. 4, 2007, pp. 384-390.
[13] A. Sabu, A. Pandey, M. J. Daud and G. Szakacs, “Tamarind Seed Powder and Palm Kernel Cake: Two Novel Agro Residues for the Production of Tannase under Solid State Fermentation by Aspergillus niger ATCC 16620,” Bioresource Technology, Vol. 96, No. 11, 2005, pp. 1223-1228.
[14] R. Cruz, C. Santos, J. S. Lima, K. A. Moreira and C. M. Souza-Motta, “Diversity of Penicillium in Soil of Caatinga and Atlantic Forest Areas of Pernambuco, Brazil: An Ecological Approach,” Nova Hedwigia, Vol. 97, No. 3-4, 2013, pp. 543-556.
[15] F. E. Clark, “Agar-Plate Method for Total Microbial Count,” In: C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger, F. E. Clark and R. C. Dinaver, Eds., Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Madson, New York, 1965, pp. 1460-1466.
[16] H. L. Barnett and B. B. Hunter, “Illustrated Genera of Imperfect Fungi,” MacMillan Publishing Company, New York, 1987.
[17] K. H. Domsch, W. Gams and T. H. Anderson, “Compendium of Soil Fungi,” Eching: IHW-189, Verlag, 2007.
[18] M. B. Ellis, “Dematiaceous Hyphomycetes,” Commonwealth Mycological Institute, Kew, 1971.
[19] M. B. Ellis, “More Dematiaceous Hyphomycetes,” Commonwealth Mycological Institute, Kew, 1976.
[20] M. A. Klich, “Identification of Common Aspergillus Species,” Centraal Bureau vöör Schimmelcultures, Utrecht, 2002.
[21] M. A. Klich and J. I. Pitt, “A Laboratory Guide to Common Aspergillus Species and Their Teleomorphs,” CSIRO Division of Food Research, North Ryde, 1988.
[22] J. I. Pitt, “A Laboratory Guide to Common Penicillium Species,” Commonwealth Scientific and Industrial Research Organization, North Wales, 1991.
[23] K. B. Raper and C. Thom, “A Manual of the Penicillia,” Williams and Wilkins Company, Baltimore, 1949.
[24] R. A. Samson and J. C. Frisvad, “Penicillium Subgenus Penicillium: New Taxonomics Schemes, Mycotoxins and Other Extrolites,” Studies in Mycology, Vol. 49, 2004, pp. 1-260.
[25] B. C. Sutton, “The Coelomycetes: Fungi Imperfecti with Pycnidia, Acervuli and Stromata,” Commonwealth Mycological Institute, Kew, 1980.
[26] EMBRAPA, “Manual de Análises Químicas de Solos Plantas e Fertilizantes,” Embrapa Informações Tecnológicas, Embrapa, Brasília, 2009.
[27] C. E. Shannon and W. Weaver, “The Mathematical Theory of Commnunication,” Bell System Technical Journal, Vol. 27, 1948, pp. 379-423.
[28] F. J. Rohlf and D. L. Fisher, “Test for Hierarchical Structure in Random Data Sets,” Systematic Zoology, Vol. 17, No. 4, 1968, pp. 407-412.
[29] B. Treviño-Cueto, M. Luis, J. C. Contreras-Esquivel, R. Rodrigues, A. Aguilera and C. N. Agilar, “Gallic Acid and Tannase Accumulation during Fungal Solid State Culture of a Tannin-Rich Desert Plant (Larrea tridentate Cov.),” Bioresource Technology, Vol. 98, No. 3, 2007, pp. 721-724. http://dx.doi.org/10.1016/j.biortech.2006.02.015
[30] A. E. Hagerman and L. G. Butler, “Protein Precipitation Method for the Quantitative Determination of Tannins,” Journal of Agricultural and Food Chemistry, Vol. 26, No. 4, 1978, pp. 809-812.
[31] S. Sharma, T. K. Bhat and R. K. Dawra, “A Spectrophotometric Method for Assay of Tannase Using Rhodanine,” Analytical Biochemistry, Vol. 279, No. 1, 2000, pp. 85-89. http://dx.doi.org/10.1006/abio.1999.4405
[32] G. Oliveira, M. B. Araújo, T. F. Rangel, D. Alagador and J. A. F. Diniz-Filho, “Conserving the Brazilian Semiarid (Caatinga) Biome under Climate Change,” Biodiversity Conservation, Vol. 21, No. 11, 2012, pp. 2913-2926.
[33] F. P. Werneck, “The Diversification of eastern South American Open Vegetation Biomes: Historical Biogeography and Perspectives,” Quaternary Science Reviews, Vol. 30, No. 13-14, 2011, pp. 1630-1648.
[34] M. A. Klich, “Biogeography of Aspergillus Species in Soil and Litter,” Mycologia, Vol. 94, No. 1, 2002, pp. 21-27. http://dx.doi.org/10.2307/3761842
[35] A. L. C. M. A. Santiago and C. M. Souza-Motta, “Mucorales Isolados do Solo de Mineração de Cobre e Produção de Amilase e Inulinase,” Acta Botanica Brasilica, Vol. 20, No. 3, 2006, pp. 641-647.
[36] Manjit, A. Yadav, N. K. Aggarwal, K. Kumar and A. Kumar, “Tannase Production by Aspergillus fumigatus MA under Solid-State Fermentation,” World Journal of Microbiology and Biotechnology, Vol. 24, No. 12, 2008, pp. 3023-3030.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.